Human Body Shape and Motion Tracking by Hierarchical Weighted ICP

  • Jia Chen
  • Xiaojun Wu
  • Michael Yu Wang
  • Fuqin Deng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)

Abstract

We present a new approach for tracking both the human body shape and the whole body motion with complete six DOF of each body limb without imposing rotation or translation constraints. First, a surface mesh with highly improved quality is obtained by using our new silhouette-based visual hull reconstruction method for each frame of multi-view videos. Then, a skinned mesh model is fitted to the data using hierarchical weighted ICP (HWICP) algorithm, where an easy-to-adjust strategy for selecting the set of ICP registration points is given based on the weights of the skinned model and the Approximate Nearest Neighbors (ANN) method is applied for fast searching nearest neighbors. By comparing HWICP with the general hierarchical ICP (Iterative Closest Point) method based on synthetic data, we demonstrate the power of weighting corresponding point pairs in HWICP, especially when adjacent body segments of target are near ‘cylindrical-shaped’.

Keywords

Human Motion Motion Capture Motion Tracking Iterative Close Point Visual Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akca, D.: Generalized procrustes analysis and its applications in photogrammetry. Tech. rep., ETHz (2004)Google Scholar
  2. 2.
    Ballan, L., Cortelazzo, G.: Marker-less motion capture of skinned models in a four camera set-up using optical flow and silhouettes. In: Proceedings of 3D Data Processing, Visualization and Transmission (3DPVT 2008), pp. 36–43 (2008)Google Scholar
  3. 3.
    Besl, P., McKay, H.: A method for registration of 3-d shapes. IEEE Trans. on PAMI 14(2), 239–256 (1992)CrossRefGoogle Scholar
  4. 4.
    Corazza, S., Gambaretto, E., Andriacchi, T.: Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications. IEEE Trans. on Biomedical Engineering 57(4), 806–812 (2009)CrossRefGoogle Scholar
  5. 5.
    Corazza, S., Mündermann, L., Andriacchi, T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. International Journal of Computer Vision (IJCV) 87, 156–169 (2010)CrossRefGoogle Scholar
  6. 6.
    Gall, J., Rosenhahn, B., Brox, T., Seidel, H.: Optimization and filtering for human motion capture. Int. Journal of Computer Vision (IJCV) 87, 75–92 (2010)CrossRefGoogle Scholar
  7. 7.
    Kehl, R., Bray, M., Van Gool, L.: Full body tracking from multiple views using stochastic sampling. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 129–136 (2005)Google Scholar
  8. 8.
    Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. on PAMI 16, 150–162 (1994)CrossRefGoogle Scholar
  9. 9.
    Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th SIGGRAPH, pp. 165–172 (2000)Google Scholar
  10. 10.
    Magnenat-Thalmann, N., Laperrire, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping. In: Proceedings of Graphics Interface 1988, pp. 26–33 (1988)Google Scholar
  11. 11.
    Ménier, C., Boyer, E., Raffin, B.: 3d skeleton-based body pose recovery. In: Proceedings of Third International Symposium on 3DPVT, pp. 389–396 (2007)Google Scholar
  12. 12.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. CVIU 104, 90–126 (2006)Google Scholar
  13. 13.
    Moschini, D., Fusiello, A.: Tracking human motion with multiple cameras using an articulated model. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2009. LNCS, vol. 5496, pp. 1–12. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Mount, D.M., Arya, S.: Ann programming manual, version 1.1 (2010), http://www.cs.umd.edu/~mount/ANN/
  15. 15.
    Mundermann, L., Corazza, S., Chaudhari, A.M., Andriacchi, T.P.: Most favorable camera configuration for a shape-from-silhouette markerless motion capture system for biomechanical analysis, vol. 5665, pp. 278–287. SPIE, San Jose (2005)Google Scholar
  16. 16.
    Ogawara, K., Li, X.L., Ikeuchi, K.: Marker-less human motion estimation using articulated deformable model. In: Proceedings of the IEEE ICRA, pp. 46–51 (2007)Google Scholar
  17. 17.
    Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and Image Understanding 108, 4–18 (2007)CrossRefGoogle Scholar
  18. 18.
    Sigal, L., Black, M.J.: Humaneva: Synchronized video and motion capture dataset for evaluation of articulated human motion. Tech. rep., Brown University (2006)Google Scholar
  19. 19.
    Song, P., Wu, X., Wang, M.Y.: A robust and accurate method for visual hull computation. In: Proc. of the IEEE ICIA, pp. 784–789 (2009)Google Scholar
  20. 20.
    Takahashi, K., Hashimoto, M.: Remarks on markerless human motion capture from voxel reconstruction with simple human model. In: Proc. of the IEEE/RSJ Int. Conference on IROS, pp. 755–760 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jia Chen
    • 1
  • Xiaojun Wu
    • 1
  • Michael Yu Wang
    • 2
  • Fuqin Deng
    • 3
  1. 1.Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenChina
  2. 2.The Chinese University of Hong KongHong KongChina
  3. 3.The University of Hong KongHong KongChina

Personalised recommendations