Immersive Visualization and Interactive Analysis of Ground Penetrating Radar Data

  • Matthew R. Sgambati
  • Steven Koepnick
  • Daniel S. Coming
  • Nicholas Lancaster
  • Frederick C. HarrisJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)


Ground Penetrating Radar is a geophysical technique for obtaining information about sub-surface earth materials. Geologists use the data collected to obtain a view of terrain underground. This data is typically viewed using a desktop interface where the user usually interacts using a keyboard and mouse. Visualizing the data in a slice by slice 2D format can be difficult to interpret. Instead, we created a program for an immersive visualization environment that uses tracked input devices. This is done using real-time, stereoscopic, perspective-corrected, slice-based volume rendering. To aid with the visualization the user can modify the display of the volume using integrated tools, such as transfer functions, lighting, and color maps. Users are also given data analysis tools to take application-specific measurements such as dip, strike, other angles, and distances in 3D. Compared to typical desktop interface interactions, the 6-degree of freedom user interface provided by the immersive visualization environment makes it notably easier to perform the application-specific measurements.


Sand Dune Ground Penetrate Radar Input Device Topographic Correction Ground Penetrate Radar Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bristow, C., Jol, H.: An introduction to ground penetrating radar (GPR) in sediments. Geological Society London Special Publications 211(1), 1–7 (2003)CrossRefGoogle Scholar
  2. 2.
    Jol, H., Bristow, C.: GPR in sediments: advice on data collection, basic processing and interpretation, a good practice guide. Geological Society London Special Publications 211(1), 9–27 (2003)CrossRefGoogle Scholar
  3. 3.
    Nuzzo, L., Leucci, G., Negri, S., Carrozzo, M., Quarta, T.: Application of 3D visualization techniques in the analysis of GPR data for archaeology. Annals of Geophysics 45(2), 321–337 (2009)Google Scholar
  4. 4.
    Sigurdsson, T., Overgaard, T.: Application of GPR for 3-D visualization of geological and structural variation in a limestone formation. J. Applied Geophysics 40(1-3), 29–36 (1998)CrossRefGoogle Scholar
  5. 5.
    Goodman, D.: GPR-SLICE Software (2010),
  6. 6.
    Malå GeoScience: Windows based acquisition and visualization software (2010),
  7. 7.
    AEGIS Instruments: Easy 3D - GPR Visualization Software (2010),
  8. 8.
    Halliburton: GeoProbe Volume Interpretation Software (2011),
  9. 9.
    O’Leary, P.: Toirt-Samhlaigh (2010),
  10. 10.
    Ropinski, T., Steinicke, F., Hinrichs, K.H.: Visual exploration of seismic volume datasets. J. WSCG 14, 73–80 (2006)Google Scholar
  11. 11.
    Billen, M., Kreylos, O., Hamann, B., Jadamec, M., Kellogg, L., Staadt, O., Sumner, D.: A geoscience perspective on immersive 3D gridded data visualization. Computers & Geosciences 34(9), 1056–1072 (2008)CrossRefGoogle Scholar
  12. 12.
    Chopra, P., Meyer, J., Fernandez, A.: Immersive volume visualization of seismic simulations: A case study of techniques invented and lessons learned. In: IEEE Visualization, pp. 497–500 (2002)Google Scholar
  13. 13.
    Winkler, C., Bosquet, F., Cavin, X., Paul, J.: Design and implementation of an immersive geoscience toolkit. In: IEEE Visualization, pp. 429–556 (1999)Google Scholar
  14. 14.
    Fröhlich, B., Barrass, S., Zehner, B., Plate, J., Göbel, M.: Exploring geo-scientific data in virtual environments. In: IEEE Visualization, pp. 169–173 (1999)Google Scholar
  15. 15.
    Dorn, G., Touysinhthiphonexay, K., Bradley, J., Jamieson, A.: Immersive 3-D visualization applied to drilling planning. The Leading Edge 20(12), 1389–1392 (2001)CrossRefGoogle Scholar
  16. 16.
    LaFayette, C., Parke, F.I., Pierce, C.J., Nakamura, T., Simpson, L.: Atta texana leafcutting ant colony: a view underground. In: ACM SIGGRAPH 2008 Talks, vol. 53(1) (2008)Google Scholar
  17. 17.
    Katz, B., Warusfel, O., Bourdot, P., Vezien, J.: CoRSAIRe–Combination of Sensori-motor Rendering for the Immersive Analysis of Results. In: Proc. Intl. Workshop on Interactive Sonification, York, UK., vol. 3 (2007)Google Scholar
  18. 18.
    Kreylos, O., Bawden, G.W., Kellogg, L.H.: Immersive visualization and analysis of LiDAR data. In: Proc. Intl. Symposium on Advances in Visual Computing, pp. 846–855 (2008)Google Scholar
  19. 19.
    Hagedorn, J., Joy, P., Dunkers, S., Peskin, A., Kelso, J., Terrill, J.: Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory. J. Research of the National Institute of Standards and Technology 112(5) (2007)Google Scholar
  20. 20.
    Griffin, S., Pippett, T.: Ground penetrating radar. Geophysical and Remote Sensing Methods for Regolith Exploration. CRC LEME Open File report 144, 80–89 (2002)Google Scholar
  21. 21.
    Subsurface Detection: Subsurface Detection. If it’s in the ground, we’ll find it (2010),
  22. 22.
    Bristow, C., Duller, G., Lancaster, N.: Age and dynamics of linear dunes in the Namib Desert. Geology 35(6), 555–558 (2007)CrossRefGoogle Scholar
  23. 23.
    Reading, H.: Sedimentary environments: processes, facies, and stratigraphy. Wiley-Blackwell, Oxford (1996)Google Scholar
  24. 24.
    Brunton Inc.: Brunton geo pocket transit (2010),
  25. 25.
    Wikipedia: Strike and dip (2010),
  26. 26.
    Norris, E., Faichney, A.: SEG Y rev 1 Data Exchange format. Technical Standards Commitee SEG (Society of Exploration Geophysicists) (2002)Google Scholar
  27. 27.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992)CrossRefGoogle Scholar
  28. 28.
    O’Leary, P., Coming, D., Sherman, W., Murray, A., Riesenfeld, C., Peng, V.: Enabling Scientific Workflows Using Immersive Microbiology. In: DVD Created for and Used in IEEE Visualization Conf.: Workshop on Scientific Workflow with Immersive Interfaces for Visualization (2008)Google Scholar
  29. 29.
    Salama, C., Kolb, A.: A vertex program for efficient box-plane intersection. In: Proc. Vision, Modeling, and Visualization, pp. 115–122 (2005)Google Scholar
  30. 30.
    Ruijters, D., Vilanova, A.: Optimizing GPU volume rendering. J. WSCG 14(1-3), 9–16 (2006)Google Scholar
  31. 31.
    Kreylos, O.: Environment-independent VR development. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 901–912. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Sherman, W.R., O’Leary, P., Whiting, E.T., Grover, S., Wernert, E.A.: IQ-Station: a low cost portable immersive environment. In: Proc. Intl. Symposium on Advances in Visual Computing, ISVC 2010, pp. 361–372 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matthew R. Sgambati
    • 1
  • Steven Koepnick
    • 1
  • Daniel S. Coming
    • 1
  • Nicholas Lancaster
    • 1
  • Frederick C. HarrisJr.
    • 2
  1. 1.Desert Research InstituteUSA
  2. 2.Department of Computer Science and EngineeringUniversity of NevadaRenoUSA

Personalised recommendations