Skip to main content

Architectural Style Classification of Building Facade Windows

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6939))

Included in the following conference series:

Abstract

Building facade classification by architectural styles allows categorization of large databases of building images into semantic categories belonging to certain historic periods, regions and cultural influences. Image databases sorted by architectural styles permit effective and fast image search for the purposes of content-based image retrieval, 3D reconstruction, 3D city-modeling, virtual tourism and indexing of cultural heritage buildings. Building facade classification is viewed as a task of classifying separate architectural structural elements, like windows, domes, towers, columns, etc, as every architectural style applies certain rules and characteristic forms for the design and construction of the structural parts mentioned. In the context of building facade architectural style classification the current paper objective is to classify the architectural style of facade windows. Typical windows belonging to Romanesque, Gothic and Renaissance/Baroque European main architectural periods are classified. The approach is based on clustering and learning of local features, applying intelligence that architects use to classify windows of the mentioned architectural styles in the training stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.S., Neven, H.: Tour the world: building a web-scale landmark recognition engine. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, pp. 1085–1092 (2009)

    Google Scholar 

  2. Zhang, W., Kosecka, J.: Hierarchical building recognition. Image and Vision Computing 25(5), 704–716 (2004)

    Article  Google Scholar 

  3. Li, Y., Crandall, D., Huttenlocher, D.: Landmark classification in large-scale image collections. In: Proceedings of IEEE 12th International Conference on Computer Vision, pp. 1957–1964 (2009)

    Google Scholar 

  4. Cornelis, N., Leibe, B., Cornelis, K., Gool, L.V.: 3d urban scene modeling integrating recognition and reconstruction. International Journal of Computer Vision 78, 121–141 (2008)

    Article  Google Scholar 

  5. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. ACM Transaction on Graphics 25, 835–846 (2006)

    Article  Google Scholar 

  6. Ali, H., Seifert, C., Jindal, N., Paletta, L., Paar, G.: Window detection in facades. In: 14th International Conference on Image Analysis and Processing (ICIAP 2007). Springer, Heidelberg (2007)

    Google Scholar 

  7. Recky, M., Leberl, F.: Windows detection using k-means in cie-lab color space. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 356–360. Springer, Heidelberg (2010)

    Google Scholar 

  8. Recky, M., Leberl, F.: Window detection in complex facades. In: European Workshop on Visual Information Processing (EUVIP 2010), pp. 220–225 (2010)

    Google Scholar 

  9. Collins, P.: Changing Ideals in Modern Architecture, pp. 1750–1950. McGill-Queen’s University Press (1998)

    Google Scholar 

  10. Ojala, T., Pietikinen, M., Mäenpää, T.: Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)

    Article  Google Scholar 

  11. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979)

    Article  Google Scholar 

  12. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)

    Article  Google Scholar 

  13. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  14. Crowley, J.L., Parker, A.C.: A representation for shape based on peaks and ridges in the difference of lowpass transform. IEEE Trans. on Pattern Analysis and Machine Intelligence 6(2), 156–170 (1984)

    Article  Google Scholar 

  15. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of The Fourth Alvey Vision Conference, pp. 147–151 (1998)

    Google Scholar 

  16. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Internationl Conference in Computer Vision, pp. 525–531 (2001)

    Google Scholar 

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Matas, J., Chum, O., Urban, M., Pajdla1, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–393 (2002)

    Google Scholar 

  19. Tuytelaars, T., Gool, L.V.: Wide baseline stereo matching based on local, affinely invariant regions. In: British Machine Vision Conference, pp. 412–425 (2000)

    Google Scholar 

  20. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV 2004, pp. 1–22 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shalunts, G., Haxhimusa, Y., Sablatnig, R. (2011). Architectural Style Classification of Building Facade Windows. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24031-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24031-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24030-0

  • Online ISBN: 978-3-642-24031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics