Skip to main content

Subvoxel Super-Resolution of Volumetric Motion Field Using General Order Prior

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6939))

Included in the following conference series:

  • 2677 Accesses

Abstract

Super-resolution is a technique to recover a high-resolution image from a low resolution image. We develop a variational super-resolution method for the subvoxel accurate volumetric optical flow computation combining variational super-resolution and the variational optical flow computation for the super-resolution optical flow computation. Furthermore, we use the prior with the fractional order differentiation for the computation of volumetric motion field to control the continuity order of the field. Our method computes the gradient and the spatial difference of a high-resolution images from these of low-resolution images directly, without computing any high resolution images which are used as intermediate data for the computation of optical flow vectors of the high-resolution image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)

    Article  Google Scholar 

  2. Davis, J.A., Smith, D.A., McNamara, D.E., Cottrell, D.M., Campos, J.: Fractional derivatives-analysis and experimental implementation. Applied Optics 32, 5943–5948 (2001)

    Article  Google Scholar 

  3. Tseng, C.-C., Pei, S.-C., Hsia, S.-C.: Computation of fractional derivatives using Fourier transform and digital FIR differentiator. Signal Processing 80, 151–159 (2000)

    Article  MATH  Google Scholar 

  4. Blu, T., Unser, M.: Image interpolation and resampling. In: Handbook of Medical Imaging, Processing and Analysis, pp. 393–420. Academic Press, London (2000)

    Google Scholar 

  5. Stark, H. (ed.): Image Recovery: Theory and Application. Academic Press, New York (1992)

    Google Scholar 

  6. Wahba, G., Wendelberger, J.: Some new mathematical methods for variational objective analysis using splines and cross-validation. Monthly Weather Review 108, 36–57 (1980)

    Article  Google Scholar 

  7. Pock, T., Urschler, M., Zach, C., Beichel, R.R., Bischof, H.: A duality based algorithm for TV- L 1-optical-flow image registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 511–518. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Marquina, A., Osher, S.J.: Image super-resolution by TV-regularization and Bregman iteration. Journal of Scientific Computing 37, 367–382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Youla, D.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Transactions on Circuits and Systems 25, 694–702 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  12. Burt, P.J., Andelson, E.H.: The Laplacian pyramid as a compact image coding. IEEE Trans. Communications 31, 532–540 (1983)

    Article  Google Scholar 

  13. Hwan, S., Hwang, S.-H., Lee, U.K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)

    Article  Google Scholar 

  14. Shin, Y.-Y., Chang, O.-S., Xu, J.: Convergence of fixed point iteration for deblurring and denoising problem. Applied Mathematics and Computation 189, 1178–1185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computer Surveys 26, 433–467 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kashu, K., Imiya, A., Sakai, T. (2011). Subvoxel Super-Resolution of Volumetric Motion Field Using General Order Prior. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24031-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24031-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24030-0

  • Online ISBN: 978-3-642-24031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics