A Flight Tested Wake Turbulence Aware Altimeter

  • Scott Nykl
  • Chad Mourning
  • Nikhil Ghandi
  • David Chelberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6939)


A flying aircraft disturbs the local atmosphere through which it flies creating a turbulent vortex at each wing tip known as a wake vortex. These vortices can persist for several minutes and endanger other aircraft traversing that turbulent airspace; large vortices are essentially invisible horizontal tornadoes and are a grave threat to smaller aircraft, especially during landing and take off. Accidents related to wake turbulence have resulted in both loss of life and aircraft destruction in the United States and around the world. Currently no cockpit instrumentation exists that tracks wake vortices and enables a pilot to sense and avoid wake turbulence in real-time. This paper presents a prototype of a novel, flight tested instrument that tracks wake vortices and presents this information to a pilot in real time using a synthetic virtual world augmented with wake turbulence information.


Augmented Reality Virtual World Wake Vortex Wake Turbulence Federal Aviation Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerz, T., Holzpfel, F., Darracq, D.: Commercial aircraft wake vortices. Progress in Aerospace Sciences 38, 181–208 (2002)CrossRefGoogle Scholar
  2. 2.
    Hay, G.C., Passman, R.H.: Wake Turbulence Training Aid. Federal Aviation Administration, 800 Independence Ave., S.W. Washington, DC 20591 (1995)Google Scholar
  3. 3.
    Boeing: Wake turbulence avoidance: A pilot and air traffic controller briefing (vhs 1/2 inch) (video). VHS 1/2 inch Video (1995)Google Scholar
  4. 4.
    Greene, G.C.: Approximate model of vortex decay in the atmosphere. Journal of Aircraft 23, 566–573 (1986); Cited By (since 1996): 81.CrossRefGoogle Scholar
  5. 5.
    Corjon, A.: Vortex model to define safe aircraft separation distances. Journal Of Aircraft 33 (1996)Google Scholar
  6. 6.
    Kantha, L.H.: Empirical model of transport and decay of aircraft wake vortices. Journal Of Aircraft 35 (1998)Google Scholar
  7. 7.
    Robins, R., Delisi, D., Aeronautics, U.S.N., Administration, S., Center, L.R., Northwest Research Associates, I.: Wake vortex algorithm scoring results. Citeseer (2002)Google Scholar
  8. 8.
    Robins, R., Delisi, D.: Further development of a wake vortex predictor algorithm and comparisons to data. AIAA Paper, 99–0757 (1999)Google Scholar
  9. 9.
    Soudakov, G.: Engineering model of the wake behind an aircraft. Trudy TsAGI 2641 (1999)Google Scholar
  10. 10.
    Sarpkaya, T.: New model for vortex decay in the atmosphere. Journal of Aircraft 37, 53–61 (2000); Cited By (since 1996): 42CrossRefGoogle Scholar
  11. 11.
    Zheng, Z.C., Lim, S.H.: Validation and operation of a wake vortex/shear interaction model. Journal of Aircraft 37, 1073–1078 (2000); Cited By (since 1996): 8.CrossRefGoogle Scholar
  12. 12.
    Moet, H., Darracq, D., Corjon, A.: Development of a decay model for vortices interacting with turbulence. In: AIAA, Aerospace Sciences Meeting and Exhibit, 39 th, Reno, NV (2001)Google Scholar
  13. 13.
    Mokry, M.: Numerical simulation of aircraft trailing vortices interacting with ambient shear or ground. Journal of Aircraft 38, 636–643 (2001); Cited By (since 1996): 14CrossRefGoogle Scholar
  14. 14.
    Centre, T.C.T.D., Jackson, W., Yaras, M., Harvey, J., Winckelmans, G., Fournier, G., Belotserkovsky, A.: Wake vortex prediction: An overview. Wayne Jackson (2001)Google Scholar
  15. 15.
    Holzapfel, F.: Probabilistic two-phase wake vortex decay and transport model. Journal of Aircraft 40, 323–331 (2003)CrossRefGoogle Scholar
  16. 16.
    Gurke, T., Lafferton, H.: The development of the wake vortices warning system for Frankfurt airport: Theory and implementation. Air Traffic Control Quarterly 5, 3–29 (1997)CrossRefGoogle Scholar
  17. 17.
    Frech, M., Holzpfel, F., Gerz, T., Konopka, J.: Short-term prediction of the horizontal wind vector within a wake vortex warning system. Meteorological Applications 9, 9–20 (2002); Cited By (since 1996): 8CrossRefGoogle Scholar
  18. 18.
    Le Roux, C., Corjon, A.: Wake vortex advisory system implementation at Orly airport for departing aircraft. Air Traffic Control Quarterly 5, 31–48 (1997)CrossRefGoogle Scholar
  19. 19.
    Hinton, D., Charnock, J., Bagwell, D., Grigsby, D.: NASA aircraft vortex spacing system development status. In: 37 th Aerospace Sciences Meeting & Exhibit, Reno, NV, AIAA, pp. 99–753 (1999)Google Scholar
  20. 20.
    Hinton, D., Charnock, J., Bagwell, D.: Design of an aircraft vortex spacing system for airport capacity improvement. AIAA 622, 1–18 (2000)Google Scholar
  21. 21.
    Frech, M.: VORTEX-TDM, a parameterized wake vortex transport and decay model and its meteorological input data base. Deutsche Flugsicherung, DFS, Langen (2001)Google Scholar
  22. 22.
    Greene, G., Rudis, R., Burnham, D.: Wake Turbulence Monitoring at San Francisco. In: 5th Wake Net Workshop, DFS Acadamy, Langen, vol. 2 (2001)Google Scholar
  23. 23.
    Barhydt, R., Warren, A.W.: Development of Intent Information Changes to Revised Minimum Aviation System Performance Standards for Automatic Dependent Surveillance Broadcast (RTCA/DO-242A). National Aeronautics and Space Administration, NASA Langley Research Center Hampton, VA 23681-2199 (2002)Google Scholar
  24. 24.
    Aerospace, H.: Smartview synthetic vision system (2011)Google Scholar
  25. 25.
    Nykl, S., Mourning, C., Leitch, M., Chelberg, D., Franklin, T., Liu, C.: An overview of the STEAMiE educational game engine. In: IEEE 38th Annual Conference on Frontiers in Education, FIE 2008, pp. F3B–21 (2008)Google Scholar
  26. 26.
    Mourning, C., Nykl, S., Xu, H., Chelberg, D., Liu, J.: GPU acceleration of robust point matching. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6455, pp. 417–426. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Mourning, C., Nykl, S., Chelberg, D., Franklin, T., Liu, C.: An overview of first generation steamie learning objects. In: Siemens, G., Fulford, C. (eds.) Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2009, Honolulu, HI, USA, AACE, pp. 3748–3757 (2009)Google Scholar
  28. 28.
    Microsoft: Microsoft bing maps platform (2011)Google Scholar
  29. 29.
    USGS: United states geological survey (2011)Google Scholar
  30. 30.
    Holforty, W., Powell, J.: Flight deck display of airborne traffic wake vortices. In: IEEE The 20th Conference on Digital Avionics Systems, DASC 2001, vol. 1, pp. 2A3–1(2001)Google Scholar
  31. 31.
    Holforty, W.: Flight-deck display of neighboring aircraft wake vortices (2003)Google Scholar
  32. 32.
    Nykl, S.: Steamie engine wake turbulence test flight - ohio university avionics engineering center (2011),
  33. 33.
    Nykl, S.: Steamie engine wake turbulence aware altimeter - ohio university avionics engineering center (2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Scott Nykl
    • 1
  • Chad Mourning
    • 1
  • Nikhil Ghandi
    • 1
  • David Chelberg
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceOhio UniversityAthensUSA

Personalised recommendations