Advertisement

Adaptive Coded Aperture Photography

  • Oliver Bimber
  • Haroon Qureshi
  • Anselm Grundhöfer
  • Max Grosse
  • Daniel Danch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6938)

Abstract

We show how the intrinsically performed JPEG compression of many digital still cameras leaves margin for deriving and applying image-adapted coded apertures that support retention of the most important frequencies after compression. These coded apertures, together with subsequently applied image processing, enable a higher light throughput than corresponding circular apertures, while preserving adjusted focus, depth of field, and bokeh. Higher light throughput leads to proportionally higher signal-to-noise ratios and reduced compression noise, or –alternatively– to lower shutter times. We explain how adaptive coded apertures can be computed quickly, how they can be applied in lenses by using binary spatial light modulators, and how a resulting coded bokeh can be transformed into a common radial one.

Keywords

Pulse Width Modulation JPEG Compression Spatial Light Modulator Circular Aperture Binary Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing. ACM Trans. Graph (Siggraph) 26, 69 (2007)CrossRefGoogle Scholar
  2. 2.
    Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and Depth from a Conventional Camera with a Coded Aperture. ACM Trans. Graph (Siggraph) 26, 70 (2007)CrossRefGoogle Scholar
  3. 3.
    Bando, Y., Chen, B.Y., Nishita, T.: Extracting Depth and Matte using a Color-Filtered Aperture. ACM Trans. Graph (Siggraph Asia) 27, 1–9 (2008)CrossRefGoogle Scholar
  4. 4.
    Zhou, C., Nayar, S.K.: What are Good Apertures for Defocus Deblurring? In: IEEE International Conference on Computational Photography (2009)Google Scholar
  5. 5.
    Zhou, C., Lin, S., Nayar, S.K.: Coded Aperture Pairs for Depth from Defocus. In: IEEE International Conference on Computer Vision, ICCV (2009)Google Scholar
  6. 6.
    Liang, C.K., Lin, T.H., Wong, B.Y., Liu, C., Chen, H.: Programmable Aperture Photography: Multiplexed Light Field Acquisition. ACM Trans. Graph (Siggraph) 27, 55:1–55:10 (2008)CrossRefGoogle Scholar
  7. 7.
    Nagahara, H., Zhou, C., Watanabe, T., Ishiguro, H., Nayar, S.K.: Programmable aperture camera using lcos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 337–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Grosse, M., Bimber, O.: Coded Aperture Projection. In: IPT/EDT, pp. 1–4 (2008)Google Scholar
  9. 9.
    Grosse, M., Wetzstein, G., Grundhöfer, A., Bimber, O.: Coded aperture projection. ACM Trans. Graph. 22, 22:1–22:12 (2010)CrossRefGoogle Scholar
  10. 10.
    Green, P., Sun, W., Matusik, W., Durand, F.: Multi-aperture photography. ACM Transactions on Graphics (Proc. SIGGRAPH) 26 (2007)Google Scholar
  11. 11.
    Horstmeyer, R., Oh, S.B., Raskar, R.: Iterative aperture mask design in phase space using a rank constraint. Opt. Express 18, 22545–22555 (2010)CrossRefGoogle Scholar
  12. 12.
    Levin, A.: Analyzing depth from coded aperture sets. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 214–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH 2006, pp. 795–804. ACM, New York (2006)Google Scholar
  14. 14.
    Agrawal, A., Xu, Y.: Coded exposure deblurring: Optimized codes for psf estimation and invertibility. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2066–2073 (2009)Google Scholar
  15. 15.
    Tai, Y.W., Kong, N., Lin, S., Shin, S.Y.: Coded exposure imaging for projective motion deblurring. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2408–2415 (2010)Google Scholar
  16. 16.
    Wallace, G.K.: The jpeg still picture compression standard. Commun. ACM 34, 30–44 (1991)CrossRefGoogle Scholar
  17. 17.
    Zhai, G., Zhang, W., Yang, X., Lin, W., Xu, Y.: Efficient deblocking with coefficient regularization, shape-adaptive filtering, and quantization constraint. IEEE Transactions on Multimedia 10, 735–745 (2008)CrossRefGoogle Scholar
  18. 18.
    Healey, G., Kondepudy, R.: Radiometric ccd camera calibration and noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994)CrossRefGoogle Scholar
  19. 19.
    Hess, R.: An open-source siftlibrary. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 1493–1496. ACM, New York (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oliver Bimber
    • 1
  • Haroon Qureshi
    • 1
  • Anselm Grundhöfer
    • 2
  • Max Grosse
    • 3
  • Daniel Danch
    • 1
  1. 1.Johannes Kepler UniversityLinzAustria
  2. 2.Disney Research ZurichSwitzerland
  3. 3.Bauhaus-UniversityWeimarGermany

Personalised recommendations