Direct Spherical Parameterization of 3D Triangular Meshes Using Local Flattening Operations

  • Bogdan Mocanu
  • Titus Zaharia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6938)

Abstract

In this paper, we propose a novel spherical parameterization approach for closed, genus-0, two-manifold, 3D triangular meshes. The method exploits a modified version of the Gaussian curvature, associated to the model vertices. Valid spherical embeddings are obtained by locally flattening the mesh in an iterative manner, which makes it possible to convert the initial mesh into a rounded, sphere-like surface that can be directly mapped onto the unit sphere. Our approach shows superior performances with respect to state of the art techniques, with a reduction in terms of angular and area distortions of more than 35% and 19% respectively.

Keywords

Gaussian Curvature Parametric Domain Initial Mesh Mesh Vertex Mesh Simplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal Surface Parameterization for Texture Mapping. IEEE Transactions on Visualization and Computer Graphics 6(2), 181–189 (2000)CrossRefGoogle Scholar
  2. 2.
    Piegl, L.A., Tiller, W.: Parametrization for Surface Fitting in Reverse Engineering. Computer-Aided Design 33(8), 593–603 (2001)CrossRefGoogle Scholar
  3. 3.
    Biermann, H., Martin, I., Bernardini, F., Zorin, D.: Cut-and-Paste Editing of Multiresolution Subdivision Surfaces. ACM Trans. Graphics 21(3), 312–321 (2002)CrossRefGoogle Scholar
  4. 4.
    Smith, J.P., Boier-Martin, I.M.: Parameterization for Remeshing Over Dynamically Changing Domains. In: Proc. SMI (2006)Google Scholar
  5. 5.
    Alliez, P., Gotsman, C.: Recent Advances in Compression of 3D Meshes. Advances in Multiresolution for Geometric Modelling, 3–26 (2005)Google Scholar
  6. 6.
    Zhu, Z.J., Pang, M.Y.: Morphing 3D Mesh Models Based on Spherical Parameterization. In: International Conference on Multimedia Information Networking and Security, pp. 313–313 (2009)Google Scholar
  7. 7.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic Parameterizations of Surface Meshes. Computer Graphics Forum 21, 210–218 (2002)CrossRefGoogle Scholar
  8. 8.
    Floater, M.: Mean Value Coordinates. Computer Aided Geometric Design 20, 19–27 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Friedel, I., Schröder, P., Desbrun, M.: Unconstrained Spherical Parameterization. In: ACM SIGGRAPH Technical Sketches. ACM, New York (2005)Google Scholar
  10. 10.
    Sorkine, O., Cohen-Or, D., Goldenthal, R., Lischinski, D.: Bounded Distortion Piecewise Mesh Parametrization. IEEE Visualization, 355–362 (2002)Google Scholar
  11. 11.
    Sheffer, A., Hart, J.: Inconspicuous Low-Distortion Texture Seam Layout. IEEE Visualization, 291–298 (2002)Google Scholar
  12. 12.
    Pinkall, U., Polthier, K.: Computing Discrete Minimal Surfaces and Their Conjugates. Experiment Mathematics 2, 15–36 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Floater, M.S., Hormann, K.: Surface Parameterization: a Tutorial and Survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Sheffer, A., Gotsman, C., Dyn, N.: Robust Spherical Parameterization of Triangular Meshes. In: Proceedings of 4th Israel-Korea Binational Workshop on Computer Graphics and Geometric Modeling, Tel Aviv, pp. 94–99 (2003)Google Scholar
  15. 15.
    Kharevych, L., Springborn, B., Schroder, P.: Discrete conformal mappings via circle patterns. ACM Transactions on Graphics, vol 25(2), 412–438 (2006)CrossRefGoogle Scholar
  16. 16.
    Ben-Chen, M., Gotsman, C., Bunin, G.: Conformal Flattening by Curvature Prescription and Metric Scaling. Computer Graphics Forum 27(2), 449–458 (2008)CrossRefGoogle Scholar
  17. 17.
    Kent, J.R., Carlson, W.E., Parent, R.E.: Shape Transformation for Polyhedral Objects. Computer Graphics, SIGGRAPH Proceedings 26(2), 47–54 (1992)CrossRefGoogle Scholar
  18. 18.
    Alexa, M.: Recent Advances in Mesh Morphing. Computer Graphics Forum 21, 173–196 (2002)CrossRefGoogle Scholar
  19. 19.
    Praun, E., Hoppe, H.: Spherical Parametrization and Remeshing. ACM Transactions on Graphics 22(3) (2003)Google Scholar
  20. 20.
    Hoppe, H.: Mesh Optimization. In: Proceedings of ACM SIGGRAPH, pp. 19–26 (1993)Google Scholar
  21. 21.
    Garland, M., Heckbert, P.S.: Surface Simplification Using Quadric Error Metrics. In: 24th Annual Conference on Computer Graphics and Interactive, pp. 209–216 (1997)Google Scholar
  22. 22.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)MATHGoogle Scholar
  23. 23.
    Xu, Z., Xu, G.: Discrete Schemes for Gaussian Curvature and Their Convergence. Computers & Mathematics with Applications 57, 1187–1195 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yoshizawa, S., Belyaev, A., Seidel, H.P.: A fast and simple stretch minimizing mesh parameterization. In: International Conference on Shape Modeling and Applications, Genova, Italy, pp. 200–208 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bogdan Mocanu
    • 1
  • Titus Zaharia
    • 1
  1. 1.Institut Télécom / Télécom SudParis, ARTEMIS Department, UMR CNRS 8145 MAP5EvryFrance

Personalised recommendations