Depth Map Enhancement Using Adaptive Steering Kernel Regression Based on Distance Transform

  • Sung-Yeol Kim
  • Woon Cho
  • Andreas Koschan
  • Mongi A. Abidi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6938)

Abstract

In this paper, we present a method to enhance noisy depth maps using adaptive steering kernel regression based on distance transform. Data-adaptive kernel regression filters are widely used for image denoising by considering spatial and photometric properties of pixel data. In order to reduce noise in depth maps more efficiently, we adaptively refine the steering kernel regression function according to local region structures, flat and textured areas. In this work, we first generate two distance transform maps from the depth map and its corresponding color image. Then, the steering kernel is modified by a newly-designed weighing function directly related to joint distance transform. The weighting function expands the steering kernel in flat areas and shrinks it in textured areas toward local edges in the depth map. Finally, we filter the noise in the depth map with the refined steering kernel regression function. Experimental results show that our method outperforms the competing methods in objective and subjective comparisons for depth map enhancement.

Keywords

Color Image Flat Area Image Denoising Kernel Regression Bilateral Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D Mapping: Using depth cameras for dense 3D modeling of indoor environments. In: Proc. of International Symposium on Experimental Robotics (2010)Google Scholar
  2. 2.
    Fehn, C., Barré, R., Pastoor, S.: Interactive 3-D TV- concepts and key technologies. Proceedings of the IEEE 94(3), 524–538 (2006)Google Scholar
  3. 3.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE Conf. on Computer Vision and Pattern Recognition (2011) Google Scholar
  4. 4.
    Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans. on Image Processing 11(10), 1141–1150 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. on Computer Graphics 23(3), 664–672 (2004)CrossRefGoogle Scholar
  6. 6.
    Riemens, A.K., Gangwal, O.P., Barenbrug, B., Berretty, R.M.: Multi-step joint bilateral depth upsampling. In: Proc. of Electronic Imaging, Visual Communications and Image Processing, pp. 1–12 (2009) Google Scholar
  7. 7.
    Takeda, H., Farsiu, S., Milanfar, P.: Deblurring using regularized locally-adaptive kernel regression. IEEE Trans. on Image Processing 17(4), 550–563 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Borgefors, G.: Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE Trans. on Patten Analysis and Machine Intelligence 10(6), 849–865 (1988)CrossRefGoogle Scholar
  9. 9.
    Feng, X., Milanfar, P.: Multiscale principal components analysis for image local orientation estimation. In: Proc. of Asilomar Conference on Signals, Systems and Computers, pp. 478–482 (2002) Google Scholar
  10. 10.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Jour. of Computer Vision 47(1-3), 7–42 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Lee, E.K., Ho, Y.S.: Generation of high-quality depth maps using hybrid camera system for 3-D video. Jour. of Visual Communication and Image Representation 22, 73–84 (2011)CrossRefGoogle Scholar
  12. 12.
    Kim, S.Y., Lee, S.B., Ho, Y.S.: Three-dimensional natural video system based on layered representation of depth maps. IEEE Trans. on Consumer Electronics 52(3), 1035–1042 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sung-Yeol Kim
    • 1
  • Woon Cho
    • 1
  • Andreas Koschan
    • 1
  • Mongi A. Abidi
    • 1
  1. 1.Imaging, Robotics, and Intelligent System LabThe University of TennesseeKnoxvilleUSA

Personalised recommendations