Multi-View Stereo Point Clouds Visualization

  • Yi Gong
  • Yuan-Fang Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6938)


3D reconstruction from image sequences using multi-view stereo (MVS) algorithms is an important research area in computer vision and has multitude of applications. Due to its image-feature-based analysis, 3D point clouds derived from such algorithms are irregularly distributed and can be sparse at plain surface areas. Noise and outliers also degrade the resulting 3D clouds. Recovering an accurate surface description from such cloud data thus requires sophisticated post processing which can be computationally expensive even for small datasets. For time critical applications, plausible visualization is preferable. We present a fast and robust method for multi-view point splatting to visualize MVS point clouds. Elliptical surfels of adaptive sizes are used for better approximating the object surface, and view-independent textures are assigned to each surfel according to MRF-based energy optimization. The experiments show that our method can create surfel models with textures from low-quality MVS data within seconds. Rendering results are plausible with a small time cost due to our view-independent texture mapping strategy.


Point Cloud Markov Random Field Dense Point Cloud View Interpolation Fast Approximate Energy Minimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In: Proc. CVPR 2007, pp. 1–8 (2007)Google Scholar
  2. 2.
    Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: Proc. ICCV 2007, pp. 1–8 (2007)Google Scholar
  3. 3.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. In: Proc. VVS 1992, pp. 75–82 (1992)Google Scholar
  4. 4.
    Amenta, N., Bern, M., Kamvysselis, M.: A new voronoi-based surface reconstruction algorithm. In: Proc. SIGGRAPH 1998, pp. 415–421 (1998)Google Scholar
  5. 5.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proc. SMA 2001, pp. 249–266 (2001)Google Scholar
  6. 6.
    Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proc. SIGGRAPH 1994, pp. 295–302 (1994)Google Scholar
  7. 7.
    Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proc. SIGGRAPH 1999, pp. 335–342 (1999)Google Scholar
  8. 8.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proc. SIGGRAPH 2001, pp. 67–76 (2001)Google Scholar
  9. 9.
    Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes via implicit surface fitting. In: Proc. SIGGRAPH 2004, pp. 609–612 (2004)Google Scholar
  10. 10.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Visual. Comput. Graph. 9, 3–15 (2003)CrossRefGoogle Scholar
  11. 11.
    Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proc. VLSM 2001, pp. 194–201 (2001)Google Scholar
  12. 12.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc. SGP 2006, pp. 61–70 (2006)Google Scholar
  13. 13.
    Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. In: Proc. SIGGRAPH 2000, pp. 335–342 (2000)Google Scholar
  14. 14.
    Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Surface splatting. In: Proc. SIGGRAPH 2001, pp. 371–378 (2001)Google Scholar
  15. 15.
    Goesele, M., Ackermann, J., Fuhrmann, S., Haubold, C., Klowsky, R., Steedly, D., Szeliski, R.: Ambient point clouds for view interpolation. In: Proc. SIGGRAPH 2010, pp. 95:1–95:6 (2010)Google Scholar
  16. 16.
    Shum, H.Y., Chan, S.C., Kang, S.B.: Image-Based Rendering. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  17. 17.
    Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. In: Proc. SIGGRAPH 1996, pp. 11–20 (1996)Google Scholar
  18. 18.
    Yang, R., Guinnip, D., Wang, L.: View-dependent textured splatting. The Visual Computer 22, 456–467 (2006)CrossRefGoogle Scholar
  19. 19.
    Lempitsky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. In: Proc. CVPR 2007, pp. 1–6 (2007)Google Scholar
  20. 20.
    Welch, B.L.: The generalization of “student’s” problem when several different population variances are involved. Biometrika 34, 28–35 (1947)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Struik, D.J.: Lectures on Classical Differential Geometry. Addison-Wesley, Reading (1950)zbMATHGoogle Scholar
  22. 22.
    Che, W., Paul, J.C., Zhang, X.: Lines of curvature and umbilical points for implicit surfaces. Computer Aided Geometric Design 24, 395–409 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)CrossRefGoogle Scholar
  24. 24.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 147–159 (2004)CrossRefGoogle Scholar
  26. 26.
    Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting on today’s gpus. In: Proc. PBG 2005, pp. 17–141 (2005)Google Scholar
  27. 27.
    Chen, C.I., Sargent, D., Tsai, C.M., Wang, Y.F., Koppel, D.: Stabilizing stereo correspondence computation using delaunay triangulation and planar homography. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 836–845. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45, 891–923 (1998)CrossRefzbMATHGoogle Scholar
  29. 29.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yi Gong
    • 1
  • Yuan-Fang Wang
    • 1
  1. 1.Computer Science DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations