Advertisement

Free Boundary Conditions Active Contours with Applications for Vision

  • Michal Shemesh
  • Ohad Ben-Shahar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6938)

Abstract

Active contours are used extensively in vision for more than two decades, primarily for applications such as image segmentation and object detection. The vast majority of active contours models make use of closed curves and the few that employ open curves rely on either fixed boundary conditions or no boundary conditions at all. In this paper we discuss a new class of open active contours with free boundary conditions, in which the end points of the open active curve are restricted to lie on two parametric boundary curves. We discuss how this class of curves may assist and facilitate various vision applications and we demonstrate its utility in applications such as boundary detection, feature tracking, and seam carving.

Keywords

Active Contour Boundary Curve Linear Feature Boundary Detection Free Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kass, M., Witkin, A., Trezopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  2. 2.
    Berger, M.O., Mohr, R.: Towards autonomy in active contour models. In: ICPR, vol. 1, pp. 847–851 (1990)Google Scholar
  3. 3.
    Della Rocca, M.R., Fiani, M., Fortunato, A., Pistillo, P.: Active contour model to detect linear features in satellite images. Int. Arch. Photo. Remote Sens. Spat. Inf. Sci. 34 (2004)Google Scholar
  4. 4.
    Li, H., Shen, T., Smith, M.B., Fujiwara, I., Vavylonis, D., Huang, X.: Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models. In: IEEE Int. Symp. on Biomed. Imaging, vol. 15 (2009)Google Scholar
  5. 5.
    Williams, D.J., Shah, M.: A fast algorithm for active contours and curvature estimation. CVGIP 55 (1992)Google Scholar
  6. 6.
    Basu, S., Mukherjee, D.P., Acton, S.T.: Active contours and their utilization at image segmentation. In: Proceedings of Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics Poprad., pp. 313–317 (2007)Google Scholar
  7. 7.
    Velasco, F.A., Marroquin, J.L.: Robust parametric active contours: the sandwich snakes. Machine Vision and Applications, 238–242 (2001)Google Scholar
  8. 8.
    Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Processing 7, 359–369 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Leymarie, F., Levine, M.D.: Tracking deformable objects in the plane using active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 15 (1993)Google Scholar
  10. 10.
    Sawano, H., Okada, M.: Road extraction by snake with inertia and differential features. In: ICPR, vol. 4, pp. 380–383 (2004)Google Scholar
  11. 11.
    Srikrishnan, V., Chaudhuri, S.: Stabilization of parametric active contours using a tangential redistribution term. IEEE Trans. Image Processing 18, 1859–1872 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cohen, L.D.: On active contour models and balloons. CVGIP 53, 218–221 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Saban, M.A., Altinok, A., Peck, A.J., Kenney, C.S., Feinstein, S.C., Wilson, L., Rose, K., Manjunath, B.S.: Automated tracking and modeling of microtubule dynamics. In: IEEE Int. Symp. on Biomed. Imaging, pp. 1032–1035 (2006)Google Scholar
  14. 14.
    Sagan, H.: Introduction to the Calculus of Variations. McGraw-Hill, Inc., New York (1969)Google Scholar
  15. 15.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vision 24, 57–78 (1999)CrossRefGoogle Scholar
  16. 16.
    Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30, 412–423 (2008)CrossRefGoogle Scholar
  17. 17.
    Gunn, S.R., Nixon, M.S.: Global and local active contours for head boundary extraction. Int. J. Comput. Vision 30, 43–54 (1998)CrossRefGoogle Scholar
  18. 18.
    van Brunt, B.: The Calculus of Variations. Springer-Verlag New York Inc., New York (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Amini, A., Tehrani, S., Weymouth, T.: Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints. In: ICCV, pp. 95–99 (1988)Google Scholar
  20. 20.
    Velasco, F.A., Marroquin, J.L.: Growing snakes: active contours for complex topologies. Pattern Recognition 36, 475–482 (2003)CrossRefGoogle Scholar
  21. 21.
    Basu, S., Mukherjee, D.P., Acton, S.T.: Implicit evolution of open ended curves. In: ICIP, pp. I:261–I:264 (2007)Google Scholar
  22. 22.
    Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)CrossRefGoogle Scholar
  24. 24.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vision 22, 61–79 (1995)CrossRefzbMATHGoogle Scholar
  25. 25.
    Cerimele, M.M., Cinque, L., Cossu, R., Galiffa, R.: Coastline detection from SAR images by level set model. In: CAIP, pp. 364–373 (2009)Google Scholar
  26. 26.
    Fua, P., Leclerc, Y.G.: Model driven edge detection. Machine Vision and Applications 3, 45–56 (1990)CrossRefGoogle Scholar
  27. 27.
    Kimmel, R., Bruckstein, A.: Regularized laplacian zero crossing as optimal edge integrators. Int. J. Comput. Vision 53, 225–243 (2003)CrossRefGoogle Scholar
  28. 28.
    Gelfand, I., Fomin, S.: Calculus of Variations. Prentice-Hall, Inc., Englewood Cliffs (1963)zbMATHGoogle Scholar
  29. 29.
    Lesage, F., Ganon, L.: Experimenting level-set based snakes for contour segmentation in radar imagery. In: Proc. of the SPIE, vol. 4041, pp. 154–162 (2000)Google Scholar
  30. 30.
    Blake, A., Isard, M.: Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion, 1st edn. Springer-Verlag New York, Inc., New York (1998)CrossRefGoogle Scholar
  31. 31.
    Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. 26, 10 (2007)CrossRefGoogle Scholar
  32. 32.
    Rubinstein, M., Shamir, A., Avidan, S.: Improved seam carving for video retargeting. ACM Trans. Graph. 27, 1–9 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michal Shemesh
    • 1
  • Ohad Ben-Shahar
    • 1
  1. 1.Ben-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations