MethMorph: Simulating Facial Deformation Due to Methamphatamine Usage

  • Mahsa Kamali
  • Forrest N. Iandola
  • Hui Fang
  • John C. Hart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6938)


We present MethMorph, a system for producing realistic simulations of how drug-free people would look if they used methamphetamine. Significant weight loss and facial lesions are common side effects of meth usage. MethMorph fully automates the process of thinning the face and applying lesions to healthy faces. We combine several recently-developed detection methods such as Viola-Jones based cascades and Lazy Snapping to localize facial features in healthy faces. We use the detected facial features in our method for thinning the face. We then synthesize a new facial texture, which contains lesions and major wrinkles. We apply this texture to the thinned face. We test MethMorph using a database of healthy faces, and we conclude that MethMorph produces realistic meth simulation images.


Facial Feature Face Detection Facial Region Meth Usage Image Completion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicosia, N., Pacula, R.L., Kilmer, B., Lundberg, R., Chiesa, J.: The Economic Cost of Methamphetamine Use in the United States, 2005. RAND Corporation (2009)Google Scholar
  2. 2.
    Siebel, T.M., Mange, S.A.: The montana meth project: ’unselling’ a dangerous drug. Stanford Law and Policy Review 20, 405–416 (2009)Google Scholar
  3. 3.
    The meth project (2011),
  4. 4.
    Faces of meth (2011),
  5. 5.
    Viola, P.A., Jones, M.J.: Robust real-time face detection. In: International Conference on Computer Vision (ICCV), p. 747 (2001)Google Scholar
  6. 6.
    Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Castrilln, M., Dniz, O., Hernndez, D., Lorenzo, J.: A comparison of face and facial feature detectors based on the violajones general object detection framework. Machine Vision and Applications 22, 481–494 (2011)Google Scholar
  8. 8.
    Castrillón-Santana, M., Déniz-Suárez, O., Lorenzo-Navarro, L.A.C., Lorenzo-Navarro, J.: Face and facial feature detection evaluation. In: International Conference on Computer Vision Theory and Applications (VISAPP), pp. 167–172 (2008)Google Scholar
  9. 9.
    Face recognition using opencv (2011),
  10. 10.
    Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Trans. Graph. 23, 303–308 (2004)CrossRefGoogle Scholar
  12. 12.
    Bediz, Y., Akar, G.B.: View point tracking for 3d display systems. In: European Signal Processing Conference, EUSIPCO (2005)Google Scholar
  13. 13.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  14. 14.
    Castrillón, M., Déniz, O., Guerra, C., Hernández, M.: Encara2: Real-time detection of multiple faces at different resolutions in video streams. Journal of Visual Communication and Image Representation 18, 130–140 (2007)CrossRefGoogle Scholar
  15. 15.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kamali Moghaddam, M., Safabakhsh, R.: Tasom-based lip tracking using the color and geometry of the face. In: International Conference on Machine Learning and Applications, ICMLA (2005)Google Scholar
  17. 17.
    Fang, H., Hart, J.C.: Detail preserving shape deformation in image editing. ACM Trans. Graph. 26 (2007)Google Scholar
  18. 18.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22, 313–318 (2003)CrossRefGoogle Scholar
  19. 19.
    Sun, J., Yuan, L., Jia, J., Shum, H.Y.: Image completion with structure propagation. ACM Trans. Graph. 24, 861–868 (2005)CrossRefGoogle Scholar
  20. 20.
    Fang, H., Hart, J.C.: Textureshop: texture synthesis as a photograph editing tool. ACM Trans. Graph. 23, 354–359 (2004)CrossRefGoogle Scholar
  21. 21.
    Fang, H., Hart, J.C.: Methods and systems for image modification. Patent US 7365744 (2008) Google Scholar
  22. 22.
    Kamali, M.: Tools for Scene Analysis and Transmission. PhD thesis, University of Illinois at Urbana-Champaign (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mahsa Kamali
    • 1
  • Forrest N. Iandola
    • 1
  • Hui Fang
    • 1
  • John C. Hart
    • 1
  1. 1.University of IllinoisUrbana-ChampaignUSA

Personalised recommendations