Delegate MAS for Large Scale and Dynamic PDP: A Case Study

  • Shaza Hanif
  • Rinde R. S. van Lon
  • Ning Gui
  • Tom Holvoet
Part of the Studies in Computational Intelligence book series (SCI, volume 382)


Pickup and Delivery Problems (PDPs) have received significant research interest in the past decades. Their industrial relevance has stimulated the study of various types of solutions. Both centralized solutions, using discrete optimization techniques, as well as distributed, multi-agent system (MAS) solutions, have proven their merits. However, real PDP problems today are more and more characterized by (1) dynamism - in terms of tasks, service time, vehicle availability, infrastructure availability, and (2) their large scale - in terms of the geographical field of operation, the number of pickup and delivery tasks and vehicles. A combination of both characteristics brings unsolved challenges.

Delegate MAS is a coordination mechanism that could prove to be valuable for constructing a decentralized solution for dynamic and large scale PDP problems. In this paper, we illustrate a solution based on delegate MAS for solving PDP. Our solution enables different agents to dynamically collect and disseminate local information and make decisions in a fully decentralized way. We applied our approach to a concrete case study. Experimental results indicate the suitability of the approach for dynamic and large scale PDP problems.


MultiAgent System Vehicle Route Problem Delivery Location Package Agent Delivery Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caridi, M., Cavalieri, S.: Multi-agent Systems in Production Planning and Control: an Overview. Production Planning and Control 15(2), 106–118 (2004)CrossRefGoogle Scholar
  2. 2.
    Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-Agent Real Time Scheduling System for Taxi Companies. In: Autonomous Agents and Multi-Agent Systems, AAMAS (2009)Google Scholar
  3. 3.
    Dorer, K., Calisti, M.: An Adaptive Solution to Dynamic Transport Optimization. In: Proc. of 4th Int. Conf. on Autonomous Agents and Multi-Agent Systems, AAMAS (2005)Google Scholar
  4. 4.
    Parragh, S.N., Doerner, K.F., Harti, R.F.: A survey on PDP Part II: Transportation between Pickup and Delivery Locations. Journal fr Betriebswirtschaft 58(2), 81–117 (2008)CrossRefGoogle Scholar
  5. 5.
    Eksioglu, B., Vural, A.V., Reisman, A.: The Vehicle Routing Problem: A Taxonomic Review. Computers and Industrial Engineering 57(4), 1472–1483 (2009)CrossRefGoogle Scholar
  6. 6.
    Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic Pickup and Delivery Problems. European Journal of Operational Research 202, 8–15 (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Hentenryck, P.V., Bent, R.W.: Online Stochastic Combinatorial Optimization. Operations Research 52, 977–987 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Rizoli, A.E., Montemanni, R., Lucibello, E., Gambardella, L.M.: Ant Colony Optimization for Real World Vehicle Routing Problems. Swarm Intelligence 1(2), 135–151 (2007)CrossRefGoogle Scholar
  9. 9.
    Kouki, Z., Chaar, B.F., Ksouri, M.: Extended CNP Framework for the dynamic Pickup and Delivery Problem Solving. In: Artificial Intelligence and Innovations III 296 (2009)Google Scholar
  10. 10.
    Fischer, K., Muller, J., Pischel, M.: Cooperative Transportation Scheduling: An Application domain for DAI. Journal of Applied Artificial Intelligence (1995)Google Scholar
  11. 11.
    Kozlak, J., Creput, J.C., Hilaire, V., Koukam, A.: Multi-agent Approach to Dynamic PDP with Uncertain Knowledge about Future Transport Demands. Fundamenta Informaticae 71 (2006)Google Scholar
  12. 12.
    Holvoet, T., Valckenaers, P.: Exploiting the Environment for Coordinating Agent Intentions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 51–66. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Claes, R., Holvoet, T.: Maintaining a Distributed Symbiotic Relationship using Delegate Multi agent Systems. In: Proc. of Winter Simulation Conference (2010)Google Scholar
  14. 14.
    Weyns, D., Holvoet, T., Helleboogh, A.: Anticipatory Vehicle Routing Using Delegate Multi-Agent Systems. In: Proc. of IEEE intelligent Transportation Systems Conference (2007)Google Scholar
  15. 15.
    Gendreau, M., Guertin, F., Potvin, J.Y., Seguin, R.: Neighborhood Search Heuristics for a Dynamic Vehicle Dispatching Problem with Pick-ups and Deliveries. Transportation Research Part C 14, 157–174 (2005)CrossRefGoogle Scholar
  16. 16.
    Psaraftis, H.N.: Dynamic Vehicle Routing: Status and Prospects. Annals of Operations Research 61, 143–164 (1995)zbMATHCrossRefGoogle Scholar
  17. 17.
    Gutenschwager, K., Niklaus, C., Vob, S.: Dispatching of an Electric Monorail System: Applying Metaheuristics to an Online PDP. Transportation Science 38, 434–446 (2004)CrossRefGoogle Scholar
  18. 18.
    Powell, W.B., Towns, M.T., Marar, A.: On the Value of Optimal Myopic Solutions for Dynamic Routing and Scheduling Problems in the Presence of user Noncompliance. Transportation Science 34(1), 67–85 (2000)zbMATHCrossRefGoogle Scholar
  19. 19.
    Jennings, N.R.: On Agent-based Software Engineering. Artificial Intelligence 117, 277–296 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Burke, E.K., Kendall, G. (eds.): Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  21. 21.
    Marrow, P.: Scalability in Multi-Agent Systems: The DIET Project. In: Workshop on Infrastructure for Agents. MAS and Scalable Multi-Agent Systems at Autonomous Agents (2001)Google Scholar
  22. 22.
    Wooldridge, M. (ed.): An Introduction to MultiAgent Systems. Wiley, Chichester (2009)Google Scholar
  23. 23.
    Van Dyke Parunak, H., Brueckner, S.A., Weyns, D., Holvoet, T., Verstraete, P., Valckenaers, P.: E Pluribus Unum: Polyagent and Delegate MAS Architectures. In: Antunes, L., Paolucci, M., Norling, E. (eds.) MABS 2007. LNCS (LNAI), vol. 5003, pp. 36–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Holvoet, T., Weyns, D., Valckenaers, P.: Patterns of Delegate MAS. In: Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems (2009)Google Scholar
  25. 25.
    Weyns, D., Holvoet, T.: From Reactive Robotics to Situated Multiagent Systems: A Historical Perspective on the Role of the Environment in Multiagent Systems. In: Workshop on Engineering Societies in the Agents World, pp. 31–56 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shaza Hanif
    • 1
  • Rinde R. S. van Lon
    • 1
  • Ning Gui
    • 1
  • Tom Holvoet
    • 1
  1. 1.Dept. Computer ScienceKatholiek Universiteit LeuvenHeverleeBelgium

Personalised recommendations