Spatial Self-organization Through Success-Driven Mobility

  • Dirk Helbing
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

We present a simple discrete model for the non-linear spatial interaction of different kinds of “subpopulations” composed of identical moving entities like particles, bacteria, individuals, etc. The model allows to mimic a variety of self-organized agglomeration and segregation phenomena. By relating it to game-theoretical ideas, it can be applied not only to attractive and repulsive interactions in physical and chemical systems, but also to the much richer combinations of positive and negative interactions found in biological and socio-economic systems. Apart from investigating symmetric interactions related to a continuous increase of the “overall success” within the system (“self-optimization”), we will focus on cases, where fluctuations further or induce self-organization, even though the initial conditions and the interactions are assumed homogeneous in space (translation invariant).

Keywords

Noise Amplitude Payoff Matrix Payoff Matrice Asymmetric Interaction Critical Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

D.H. thanks Eörs Szathmáry and Tamás Vicsek for inspiring discussions and the German Research Foundation (DFG) for financial support by a Heisenberg scholarship. T.P. is grateful to the Alexander-von-Humboldt Foundation for financial support during his stay in Stuttgart.

References

  1. 1.
    W. Weidlich, Physics and social science—The approach of synergetics. Phys. Reports 204, 1–163 (1991)Google Scholar
  2. 2.
    J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior. (Princeton University, Princeton, 1944)Google Scholar
  3. 3.
    R. Axelrod, W.D. Hamilton, The evolution of cooperation. Science 211, 1390–1396 (1981)Google Scholar
  4. 4.
    R. Axelrod, D. Dion, The further evolution of cooperation. Science 242, 1385–1390 (1988)Google Scholar
  5. 5.
    J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems. (Cambridge University Press, Cambridge, 1988)Google Scholar
  6. 6.
    N.S. Glance, B.A. Huberman, The dynamics of social dilemmas. Sci. Am. 270, 76–81 (1994)Google Scholar
  7. 7.
    D. Helbing, Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes. (Kluwer Academics, Dordrecht, 1995)Google Scholar
  8. 8.
    F. Schweitzer (ed.), Self-Organization of Complex Structures, in From individual to Collective Dynamics. (Gordon and Breach, Amsterdam, 1997)Google Scholar
  9. 9.
    M. Lewenstein, A. Nowak, B. Latané, Statistical mechanics of social impact. Phys. Rev. A 45, 763–776 (1992)Google Scholar
  10. 10.
    S. Galam, Rational group decision making. Physica A 238, 66–80 (1997)Google Scholar
  11. 11.
    D. Helbing, Verkehrsdynamik [Traffic Dynamics]. (Springer, Berlin, 1997)Google Scholar
  12. 12.
    D. Helbing, P. Molnár, Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)Google Scholar
  13. 13.
    D. Helbing, A. Hennecke, M. Treiber, Phase diagram of traffic states in the presence of inhomogeneities. Phys. Rev. Lett. 82, 4360–4363 (1999)Google Scholar
  14. 14.
    D. Helbing, B.A. Huberman, Coherent moving states in highway traffic. Nature 396, 738–740 (1998)Google Scholar
  15. 15.
    M. Treiber, D. Helbing, Macroscopic simulation of widely scattered synchronized traffic states. J. Phys. A: Math. Gen. 32, L17-L23 (1999)Google Scholar
  16. 16.
    M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62(2), 1805–1824 (2000)Google Scholar
  17. 17.
    D. Helbing, J. Keltsch, P. Molnár, Modelling the evolution of human trail systems. Nature 388, 47–50 (1997)Google Scholar
  18. 18.
    H. Haken Synergetics. (Springer, Berlin, 1977)Google Scholar
  19. 19.
    H. Haken Advanced Synergetics. (Springer, Berlin, 1983)Google Scholar
  20. 20.
    D. Helbing, D. Mukamel, G.M. Schütz, Global phase diagram of a one-dimensional driven lattice gas. Phys. Rev. Lett. 82, 10–13 (1999)Google Scholar
  21. 21.
    P. Manneville, Dissipative Structures and Weak Turbulence. (Academic Press, New York, 1990)Google Scholar
  22. 22.
    E.C. Zeeman (ed.), Catastrophe Theory. (Addison-Wesley, London, 1977)Google Scholar
  23. 23.
    L. von Bertalanffy, General System Theory. (Braziller, New York, 1968)Google Scholar
  24. 24.
    W. Buckley, Sociology and Modern Systems Theory. (Prentice-Hall, Englewood Cliffs, NJ, 1967)Google Scholar
  25. 25.
    A. Rapoport, General System Theory. Essential Concepts and Applications. (Abacus Press, Tunbridge Wells, Kent, 1986)Google Scholar
  26. 26.
    R. Feistel, W. Ebeling, Evolution of Complex Systems. (Kluwer Academic, Dordrecht, 1989)Google Scholar
  27. 27.
    D. Helbing, Stochastic and Boltzmann-like models for behavioral changes, and their relation to game theory. Physica A 193, 241–258 (1993)Google Scholar
  28. 28.
    D. Helbing, T. Vicsek, Optimal self-organization. New J. Phys. 1, 13.1–13.17 (1999)Google Scholar
  29. 29.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance. Rev. Modern Phys. 70, 223–288 (1998)Google Scholar
  30. 30.
    J. Łuczka, R. Bartussek, P. Hänggi, White noise induced transport in periodic structures. Europhys. Lett. 31, 431–436 (1995)Google Scholar
  31. 31.
    P. Reimann, R. Bartussek, R. Häußler, P. Hänggi, Brownian motors driven by temperature oscillations. Phys. Lett. A 215, 26–31 (1996)Google Scholar
  32. 32.
    D. Helbing, I.J. Farkas, T. Vicsek, Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84, 1240–1243 (2000)Google Scholar
  33. 33.
    G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. (Wiley, New York, 1977)Google Scholar
  34. 34.
    I. Prigogine, Order through fluctuation: Self-organization and social system, in Evolution and Consciousness. Human Systems in Transition, ed. by E. Jantsch and C.H. Waddington (Addison-Wesley, Reading, MA, 1976), pp. 93–130Google Scholar
  35. 35.
    W. Horsthemke, R. Lefever, Noise-Induced Transitions. (Springer, Berlin, 1984)Google Scholar
  36. 36.
    A.M. Turing, The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B237, 37–72 (1952)Google Scholar
  37. 37.
    J.D. Murray, Lectures on Nonlinear Differential Equation-Models in Biology. (Clanderon Press, Oxford, 1977)Google Scholar
  38. 38.
    P.C. Fife, Mathematical aspects of reacting and diffusing systems. (Springer, New York, 1979)Google Scholar
  39. 39.
    E. Convay, D. Hoff, J.A. Smoller, Large time behavior of systems of nonlinear diffusion equations. SIAM J. Appl. Math. 35, 1–16 (1978)Google Scholar
  40. 40.
    D.A. Kessler, H. Levine, Fluctuation-induced diffusive instabilities. Nature 394, 556–558 (1998)Google Scholar
  41. 41.
    H. Zhonghuai, Y. Lingfa, X. Zuo, X. Houwen, Noise induced pattern transition and spatiotemporal stochastic resonance. Phys. Rev. Lett. 81, 2854–2857 (1998)Google Scholar
  42. 42.
    A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Physical Review Letters 58, 1038–1041 (1987)Google Scholar
  43. 43.
    J.A.C. Gallas, H.J. Herrmann, S. Sokołowski, Convection cells in vibrating granular media. Phys. Rev. Lett. 69, 1371–1374 (1992)Google Scholar
  44. 44.
    P.B. Umbanhowar, F. Melo, H.L. Swinney, Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996)Google Scholar
  45. 45.
    J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes. (Springer, New York, 1987)Google Scholar
  46. 46.
    D. Helbing, Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of behavioral models. Physics A 196, 546–573 (1993)Google Scholar
  47. 47.
    S.B. Santra, S. Schwarzer, H. Herrmann, Fluid-induced particle-size segregation in sheared granular assemblies. Phys. Rev. E 54, 5066–5072 (1996)Google Scholar
  48. 48.
    Ben-Jacob, E., O. Schochet, A. Tenenbaum, I. Cohen, A. Czirók, T. Vicsek, Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46–49 (1994)Google Scholar
  49. 49.
    Ben-Jacob, E., From snowflake formation to growth of bacterial colonies, Part II: Cooperative formation of complex colonial patterns. Contemp. Phys. 38, 205–241 (1997)Google Scholar
  50. 50.
    D.A. Kessler, H. Levine, Pattern formation in Dictyostelium via the dynamics of cooperative biological entities. Phys. Rev. E 48, 4801–4804 (1993)Google Scholar
  51. 51.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)Google Scholar
  52. 52.
    F. Schweitzer, K. Lao, F. Family, Active random walkers simulate trunk trail formation by ants. BioSystems, 41, 153–166 (1997)Google Scholar
  53. 53.
    E.M. Rauch, M.M. Millonas, D.R. Chialvo, Pattern formation and functionality in swarm models. Phys. Lett. A, 207, 185–193 (1995)Google Scholar
  54. 54.
    S. Wolfram, Cellular automata as models of complexity. Nature 311, 419–424 (1984)Google Scholar
  55. 55.
    D. Stauffer, Computer simulations of cellular automata. J. Phys. A: Math. Gen. 24, 909–927 (1991)Google Scholar
  56. 56.
    B.A. Huberman, N.S. Glance, Evolutionary games and computer simulations. Proc. Nat. Acad. Sci. USA 90, 7716–7718 (1993)Google Scholar
  57. 57.
    T.C. Schelling, Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dirk Helbing
    • 1
  1. 1.CLU E1ETH ZurichZurichSwitzerland

Personalised recommendations