Agent-Based Modeling

Part of the Understanding Complex Systems book series (UCS)


Since the advent of computers, the natural and engineering sciences have enormously progressed. Computer simulations allow one to understand interactions of physical particles and make sense of astronomical observations, to describe many chemical properties ab initio, and to design energy-efficient aircrafts and safer cars. Today, the use of computational devices is pervasive. Offices, administrations, financial trading, economic exchange, the control of infrastructure networks, and a large share of our communication would not be conceivable without the use of computers anymore. Hence, it would be very surprising, if computers could not make a contribution to a better understanding of social and economic systems.


Traffic Flow System Behavior Stylize Fact Route Choice Goal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Helbing, S. Balietti, From social data mining to forecasting socio-economic crisis. visioneer white paper (2010)
  2. 2.
    N. Gilbert, K.G. Troitzsch, Simulation for the Social Scientist. (Open University Press, England, 2005)Google Scholar
  3. 3.
    J.M. Epstein, R. Axtell, Growing artificial societies. (Cambridge, MA, 1996)Google Scholar
  4. 4.
    J.M. Epstein, Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton Studies in Complexity. (Princeton University Press, Princeton, 2007)Google Scholar
  5. 5.
    N.R. Jennings, On agent-based software engineering. Artif. Intell. 117(2), 277–296 (2000)Google Scholar
  6. 6.
    A.M. Uhrmacher, D. Weyns, Multi-Agent Systems: Simulation and Applications. (CRC Press, Inc., Boca Raton, FL, USA, 2009)Google Scholar
  7. 7.
    N. Gilbert, S. Bankes, Platforms and methods for agent-based modeling. Proc. Natl. Acad. Sci. USA 99(Suppl 3), 7197 (2002)Google Scholar
  8. 8.
    M.W. Macy, R. Willer, From factors to actors: computational sociology and agent-based modeling. Annu. Rev. Sociol. 28(1), 143–166 (2002)Google Scholar
  9. 9.
    J.P. Davis, K.M. Eisenhardt, C.B. Bingham, Developing theory through simulation methods. Acad. Manag. Rev. 32(2), 480 (2007)Google Scholar
  10. 10.
    R.A. Bentley, P. Ormerod, Agents, intelligence, and social atoms, in Creating Consilience: Integrating the Sciences and the Humanities, ed. by M. Collard, E. Slingerland (Oxford University Press, 2011)Google Scholar
  11. 11.
    D. Helbing, Pluralistic modeling of complex systems (2010) CCSS-10-009Google Scholar
  12. 12.
    J.M. Epstein, Why model? J. Artif. Soc. Soc. Simulat. 11(4), 12 (2008).
  13. 13.
    D. Helbing, S. Balietti, Fundamental and real-world challenges in economics. Sci. Cult. 76, 399–417 (2010). Special Issue: 15 year of econophysics researchGoogle Scholar
  14. 14.
    D. Helbing, A. Szolnoki, M. Perc, G. Szabó, Evolutionary establishment of moral and double moral standards through spatial interactions. PLoS Comput. Biol. 6(4), e1000758, 04 (2010)Google Scholar
  15. 15.
    R. May, A. McLean, Theoretical Ecology: Principles and Applications, 3rd edn. (Oxford University Press, USA, 2007)Google Scholar
  16. 16.
    I. Foster, A two-way street to science’s future. Nature 440, 419 (2006)Google Scholar
  17. 17.
    C.S. Taber, R.J. Timpone, Computational Modelign. (Sage, London, 1996)Google Scholar
  18. 18.
    F. Schweitzer, Brownian Agents and Active Particles. On the Emergence of Complex Behavior in the Natural and Social Sciences. (Springer, Berlin, 2003)Google Scholar
  19. 19.
    D. Helbing, J. Keltsch, P. Molnar, Modelling the evolution of human trail systems. Nature 388(6637), 47–50 (1997)Google Scholar
  20. 20.
    J.M. Epstein, Modelling to contain pandemics. Nature 460(7256), 687 (2009)Google Scholar
  21. 21.
    J. Parker, J. Epstein, A global-scale distributed agent-based model of disease transmission, ACM Transactions on Modelling and Computer Simulation (TOMACS) 22(1), (2011)Google Scholar
  22. 22.
    M. Treiber, A. Hennecke, D. Helbing, Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805 (2000)Google Scholar
  23. 23.
    D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models. Eur. Phys. J. B 69(4), 539–548 (2009)Google Scholar
  24. 24.
    R.K. Sawyer, Artificial Societies. Socio. Meth. Res. 31(3), 325 (2003)Google Scholar
  25. 25.
    H.J. Aaron, Distinguished lecture on economics in government: Public policy, values, and consciousness. J. Econ. Perspect. 8(2), 3–21 (1994).
  26. 26.
    A.P. Kirman, Whom or what does the representative individual represent? J. Econ. Perspect. 6(2), 117–36 (1992). Google Scholar
  27. 27.
    D. Helbing, M. Treiber, A. Kesting, M. Schönhof, Theoretical vs. empirical classification and prediction of congested traffic states. Eur. Phys. J. B 69(4), 583–598 (2009)Google Scholar
  28. 28.
    D. Helbing, Verkehrsdynamik. (Springer, Berlin, 1997)Google Scholar
  29. 29.
    D. Helbing, Managing Complexity: Insights, Concepts, Applications, 1st edn. (Springer, Berlin, 2007)Google Scholar
  30. 30.
    D. Helbing, Systemic risks in society and economics (2009). Sante Fe Institute, working paper 09-12-044.Google Scholar
  31. 31.
    R. Kuehne, Freeway control using a dynamic traffic flow model and vehicle reidentification techniques. Transport. Res. Record 1320, 251–259 (1991)Google Scholar
  32. 32.
    B.S. Kerner, P. Konhäuser, Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48(4), 2335+ (1993)Google Scholar
  33. 33.
    R.E. Chandler, R. Herman, E.W. Montroll, Traffic dynamics: studies in car following. Oper. Res., 165–184 (1958)Google Scholar
  34. 34.
    R. Herman, E.W. Montroll, R.B. Potts, R.W. Rothery, Traffic dynamics: analysis of stability in car following. Oper. Res. 7(1), 86–106 (1959)Google Scholar
  35. 35.
    D. Helbing, M. Treiber, Critical discussion of “synchronized flow”. Cooper. Transport. Dyn. 1, 2.1–2.24 (2002)Google Scholar
  36. 36.
    D. Helbing, T. Seidel, S. Laemmer, K. Peters, Econophysics and Sociophysics - Trends and Perspectives, chapter Self-organization principles in supply networks and production systems (Wiley, Weinheim, 2006), pp. 535–558Google Scholar
  37. 37.
    D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the control of traffic intersections. Eur. Phys. J. B 70(2), 257–274 (2009)Google Scholar
  38. 38.
    Dirk Helbing, Illés J. Farkas, and Tamás Vicsek, Freezing by Heating in a Driven Mesoscopic System. Phys. Rev. Lett. 84(6), 1240–1243 (2000)Google Scholar
  39. 39.
    D. Helbing, W. Yu, The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. Sci. 106(10), 3680–3685 (2009)Google Scholar
  40. 40.
    S. Laemmer, D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks. JSTAT (2008). P04019Google Scholar
  41. 41.
    Michael Mäs, Andreas Flache, and Dirk Helbing, Individualization as Driving Force of Clustering Phenomena in Humans. PLoS Comput. Biol. 6(10), e1000959+ (2010)Google Scholar
  42. 42.
    J. Lorenz, H. Rauhut, F. Schweitzer, D. Helbing, How social influence undermines the wisdom of crowds. Proc. Natl. Acad. Sci. USA (PNAS) 108(22), 9020–9025 (2011)Google Scholar
  43. 43.
    D. Helbing, W. Yu, K.-D. Opp, H. Rauhut, The emergence of homogeneous norms in heterogeneous populations. Santa Fe Working Paper 11-01-001 (2011), see, last accessed on March 6, 2012
  44. 44.
    C. Nardini, B. Kozma, A. Barrat, Who’s talking first? consensus or lack thereof in coevolving opinion formation models. Phys. Rev. Lett. 100(15), 158701 (2008)Google Scholar
  45. 45.
    J.S. Sichman, Depint: Dependence-based coalition formation in an open multi-agent scenario. JASSS J. Artif. Soc. Soc. Simulat. 1(2) (1998)Google Scholar
  46. 46.
    M.E. Gaston, M. des Jardins, Agent-organized networks for dynamic team formation. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, AAMAS ’05, pages 230–237, New York, NY, USA, 2005. ACMGoogle Scholar
  47. 47.
    E. Bonabeau, M. Dorigo, G. Theraulaz, Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)Google Scholar
  48. 48.
    G. Szabo, G. Fath, Evolutionary games on graphs. Phys. Rep. 446(4-6), 97–216 (2007)Google Scholar
  49. 49.
    P.J. Carrington, J. Scott, S. Wasserman, Models and Methods in Social Network Analysis. (Cambridge University Press, Cambridge, 2005)Google Scholar
  50. 50.
    P. Holme, G. Ghoshal, Dynamics of networking agents competing for high centrality and low degree. Phys. Rev. Lett. 96(9), 098701 (2006)Google Scholar
  51. 51.
    M. Sierhuis, J.M. Bradshaw, A. Acquisti, R. van Hoof, R. Jeffers, A. Uszok, Human-Agent Teamwork and Adjustable Autonomy in Practice. In Proceedings of the seventh international symposium on artificial intelligence, robotics and automation in space (I-SAIRAS), 2003Google Scholar
  52. 52.
    Robert Axelrod, The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration, 1st printing edn. (Princeton University Press, Princeton, 1997)Google Scholar
  53. 53.
    S. Bowles, H. Gintis, The evolution of strong reciprocity: cooperation in heterogeneous populations. Theor. Popul. Biol. 65(1), 17–28 (2004)Google Scholar
  54. 54.
    D. Helbing, A. Johansson, Cooperation, norms, and conflict: A unified approach (2009) SFI Working PaperGoogle Scholar
  55. 55.
    Heiko Rauhut and Marcel Junker, Punishment deters crime because humans are bounded in their strategic decision-making. J. Artif. Soc. Soc. Simulat. 12(3), 1 (2009)Google Scholar
  56. 56.
    L-E. Cederman, Modeling the size of wars: From billiard balls to sandpiles. Am. Polit. Sci. Rev. 97, 135–150 (2003)Google Scholar
  57. 57.
    L-E. Cederman, Emergent Actors in World Politics: How States and Nations Develop and Dissolve. (Princeton University Press, Princeton, NJ, 1997)Google Scholar
  58. 58.
    C. Hommes, Chapter 23 Heterogeneous Agent Models in Economics and Finance, in Handbook of Computational Economics, vol. 2 (Elsevier, 2006), pp. 1109–1186Google Scholar
  59. 59.
    B. LeBaron, Building the santa fe artificial stock market. Physica A, 2002. Working Paper, Brandeis University.Google Scholar
  60. 60.
    M. Raberto, S. Cincotti, S.M. Focardi, M. Marchesi, Agent-based simulation of a financial market. Phys. Stat. Mech. Appl. 299(1-2), 319–327 (2001)Google Scholar
  61. 61.
    J. Zhang, Growing Silicon Valley on a landscape: an agent-based approach to high-tech industrial clusters. Entrepreneurships, the New Economy and Public Policy, pp. 71–90 (2005)Google Scholar
  62. 62.
    Robert Axtell, The emergence of firms in a population of agents. Working Papers 99-03-019, Santa Fe Institute, March 1999Google Scholar
  63. 63.
    T. Kaihara, Multi-agent based supply chain modelling with dynamic environment. Int. J. Prod. Econ. 85(2), 263–269 (2003)Google Scholar
  64. 64.
    C. Preist, Commodity trading using an agent-based iterated double auction, in Proceedings of the third annual conference on Autonomous Agents (ACM 1999), pp. 131–138.Google Scholar
  65. 65.
    Lebaron, Blake, Tesfatsion, Leigh, Modeling macroeconomies as open-ended dynamic systems of interacting agents. Am. Econ. Rev. 98(2), 246–250 (2008)Google Scholar
  66. 66.
    Leigh Tesfatsion, Agent-based computational economics: growing economies from the bottom up. Artif. Life 8(1), 55–82 (2002)Google Scholar
  67. 67.
    J.R. Harrison, Z. Lin, G.R. Carroll, K.M. Carley, Simulation modeling in organizational and management research. Acad. Manag. Rev. 32(4), 1229 (2007)Google Scholar
  68. 68.
    B.S. Onggo, Parallel discrete-event simulation of population dynamics. In Proceedings of Winter Simulation Conference 2008 (Miami, FL, USA), pp. 1047–1054Google Scholar
  69. 69.
    Y. Mansury, M. Kimura, J. Lobo, T.S. Deisboeck, Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J. Theor. Biol. 219(3), 343–370 (2002)Google Scholar
  70. 70.
    D. Osullivan, J.M Macgill, C. Yu, Agent-based residential segregation: a hierarchically structured spatial model. Agent 2003 Challenges in Social Simulation (2003)Google Scholar
  71. 71.
    M. Batty, Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. (The MIT Press, Cambridge, 2007)Google Scholar
  72. 72.
    D. Helbing, K. Nagel, The physics of traffic and regional development. Contemp. Phys. 45(5), 405–426 (2004)Google Scholar
  73. 73.
    V. Killer, K.W. Axhausen, D. Guth, C. Holz-Rau, Understanding regional effects of travel times in switzerland and germany 1970-2005. Jonkoping, Sweden, August 2010. 50th European Regional Science Association (ERSA)Google Scholar
  74. 74.
    C.R. Binder, C. Hofer, A. Wiek, R.W. Scholz, Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of appenzell ausserrhoden, switzerland. Ecol. Econ. 49(1), 1–17 (2004)Google Scholar
  75. 75.
    H. Dia, An agent-based approach to modelling driver route choice behaviour under the influence of real-time information. Transport. Res. C Emerg. Tech. 10(5-6), 331–349 (2002)Google Scholar
  76. 76.
    C.M. Henein, T. White, Agent-based modelling of forces in crowds, in Multi-agent and Multi-agent-Based Simulation (Springer, Berlin, 2005), pp. 173–184Google Scholar
  77. 77.
    M. Batty, Agent-based pedestrian modelling, in Advanced spatial analysis: the CASA book of GIS, page 81 (2003)Google Scholar
  78. 78.
    D. Delli Gatti, Emergent macroeconomics : an agent-based approach to business fluctuations. (Springer, Berlin, 2008)Google Scholar
  79. 79.
    M. Aoki, H. Yoshikawa, Reconstructing Macroeconomics: A Perspective from Statistical Physics and Combinatorial Stochastic Processes (Japan-US Center UFJ Bank Monographs on International Financial Markets), 1st edn. (Cambridge University Press, Cambridge, 2006)Google Scholar
  80. 80.
    R. Conte, R. Hegselmann, P. Terna, Simulating Social Phenomena. (Springer, Berlin, 1997)Google Scholar
  81. 81.
    R. Sun (ed.), Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation, 1st edn. (Cambridge University Press, Cambridge, 2008)Google Scholar
  82. 82.
    N. Gilbert, Agent-Based Models. (Sage Publications, Inc, 2007)Google Scholar
  83. 83.
    V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W.M. Mooij, S.F. Railsback, H.H. Thulke, J. Weiner, T. Wiegand, D.L. DeAngelis, Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750), 987 (2005)Google Scholar
  84. 84.
    R. Axelrod, Advancing the art of simulation in the social sciences, in Handbook of Research on Nature Inspired Computing for Economy and Management, ed. by Jean-Philippe Rennard (Hersey, PA, 2005)Google Scholar
  85. 85.
    K. Nagel, Parallel implementation of the transims micro-simulation. Parallel Comput. 27(12), 1611–1639 (2001)Google Scholar
  86. 86.
    M. Rickert, K. Nagel, Dynamic traffic assignment on parallel computers in transims. Future Generat. Comput. Syst. 17(5), 637–648 (2001)Google Scholar
  87. 87.
    K. Nagel, R.J. Beckman, C.L. Barrett, Transims for urban planning. Los Alamos Unclassified Report (LA-UR) 98-4389, Los Alamos National Laboratory (1999)Google Scholar
  88. 88.
    K. Nagel, C.L. Barrett, Using microsimulation feedback for trip adaptation for realistic traffic in Dallas. Santa Fe Working Paper 97-03-028 (1997), see, last accessed on March 6, 2012
  89. 89.
    P.M. Simon, J. Esser, and Nagel K. Simple queueing model applied to the city of portland. Int. J. Mod. Phys. C 10(5), 941–960 (1999)Google Scholar
  90. 90.
    B. Raney, N. Cetin, A. Vollmy, M. Vrtic, Axhausen. K., K. Nagel, An agent-based microsimulation model of swiss travel: First results. Network Spatial. Econ. 3, 23–41 (2003)Google Scholar
  91. 91.
    M. Balmer, K.W. Axhausen, K. Nagel, An agent based demand modeling framework for large scale micro-simulations (2005) Working paper, 329, Institute for Transport Planning and Systems (IVT), ETH Zurich, Switzerland.Google Scholar
  92. 92.
    D. Charypar, K. Nagel, Generating complete all-day activity plans with genetic algorithms. Transportation 32(4), 369–397 (2005)Google Scholar
  93. 93.
    K.W. Axhausen, T. Garling, Activity-based approaches to travel analysis: conceptual frameworks, models, and research problems. Transport Rev. 12(4), 323–341 (1992)Google Scholar
  94. 94.
    G. Laemmel, D. Grether, K. Nagel, The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transport. Res. C Emerg. Tech. 18(1), 84–98 (2010)Google Scholar
  95. 95.
    H. Taubenboeck, N. Goseberg, N. Setiadi, G. Laemmel, F. Moder, M. Oczipka, H. Klupfel, Roland Wahl, T. Schlurmann, G. Strunz, J. Birkmann, K. Nagel, F. Siegert, F. Lehmann, S. Dech, A. Gress, R. Klein, “last-mile” preparation for a potential disaster - interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of padang, indonesia. Nat. Hazards Earth Syst. Sci. 9(4), 1509–1528 (2009).
  96. 96.
    J. Min, J.E. Beyler, Brown T.H., Y. Jun Son, A.T. Jones, Toward modeling and simulation of critical national infrastructure interdependencies. IIE Trans., 57–71 (2007) special issue on Industrial Engineering and Operations Research in Homeland Security.Google Scholar
  97. 97.
    C. Barrett, S. Eubank, M. Marathe, Modeling and simulation of large biological, information and socio-technical systems: An interaction based approach, in Interactive Computation, ed. by D. Goldin, S.A. Smolka, P. Wegner (Springer, Berlin, 2006), pp. 353–392. 10.1007/3-540-34874-3_14Google Scholar
  98. 98.
    National Infrastructure Simulation and Analysis Center (NISAC), see, last accessed on March 6, 2012
  99. 99.
    W. Kermack, A. Mckendrick, Contributions to the mathematical theory of epidemics–i. Bull. Math. Biol. 53(1), 33–55 (1991)Google Scholar
  100. 100.
    W. Kermack, A. Mckendrick, Contributions to the mathematical theory of epidemics–ii. the problem of endemicity. Bull. Math. Biol. 53(1), 57–87 (1991)Google Scholar
  101. 101.
    W. Kermack, A. McKendrick, Contributions to the mathematical theory of epidemics–iii. further studies of the problem of endemicity. Bull. Math. Biol. 53(1), 89–118 (1991)Google Scholar
  102. 102.
    V. Colizza, A. Barrat, M. Bartholemy, A. Vespignani, The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. USA 103(7), 2015–2020 (2006)Google Scholar
  103. 103.
    L. Hufnagel, D. Brockmann, T. Geisel, Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 101(42), 15124–15129 (2004)Google Scholar
  104. 104.
    S. Eubank, H. Guclu, Anil K.V.S., M.V. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)Google Scholar
  105. 105.
    Artificial stock market, see, last accessed on March 6, 2012
  106. 106.
    U-mart., last accessed on March 6, 2012
  107. 107.
    Eurace., last accessed on March 6, 2012
  108. 108.
    A. Cangelosi, D. Parisi, Simulating the evolution of language. (Springer, Berline, 2002)Google Scholar
  109. 109.
    R. Dunbar, Grooming, gossip, and the evolution of language. (Harvard University Press, Cambridge, 1998)Google Scholar
  110. 110.
    M.A. Nowak, D.C. Krakauer, The evolution of language. Proc. Natl. Acad. Sci. USA 96(14), 8028 (1999)Google Scholar
  111. 111.
    D. Helbing, S. Balietti, How to create an innovation accelerator. Eur. Phys. J. Special Topics 195, 101–136 (2011)Google Scholar
  112. 112.
    M. Eigen, P. Schuster, The Hypercycle. Naturwissenschaften 65(1), 7–41 (1978)Google Scholar
  113. 113.
    R.K. Merton, The Matthew effect in science. The reward and communication systems of science are considered. Science (New York, N.Y.) 159(810), 56–63 (1968)Google Scholar
  114. 114.
    M. Mcpherson, L. Smith-Lovin, J.M. Cook, Birds of a Feather: Homophily in Social Networks. Annu. Rev. Sociol. 27, 415–444 (2001)Google Scholar
  115. 115.
    N.A. Christakis, J.H. Fowler, The spread of obesity in a large social network over 32 years. New Engl. J. Med. 357(4), 370–379 (2007)Google Scholar
  116. 116.
    N.A. Christakis, J.H. Fowler, The Collective Dynamics of Smoking in a Large Social Network. New Engl. J. Med. 358(21), 2249–2258 (2008)Google Scholar
  117. 117.
    K.P. Smith, N.A. Christakis, Social Networks and Health. Annu. Rev. Sociol. 34(1), 405–429 (2008)Google Scholar
  118. 118.
    T. Chadefaux, D. Helbing, How wealth accumulation can promote cooperation. PLoS One 5(10), e13471, 10 (2010)Google Scholar
  119. 119.
    D. Helbing, W. Yu, H. Rauhut, Self-organization and emergence in social systems: Modeling the coevolution of social environments and cooperative behavior. J. Math. Sociol. 35, 177–208 (2011)Google Scholar
  120. 120.
    A.P. Fiske, Structures of Social Life: The Four Elementary Forms of Human Relations: Communal Sharing, Authority Ranking, Equality Matching, Market Pricing. (Free Press, 1991)Google Scholar
  121. 121.
    Mark Granovetter, The strength of weak ties: a network theory revisited. Sociol. Theor. 1, 201–233 (1982)Google Scholar
  122. 122.
    G. Gigerenzer, P.M. Todd, ABC Research Group, Simple Heuristics That Make Us Smart (Oxford University Press, New York, 2000)Google Scholar
  123. 123.
    W.H. Greene, Econometric Analysis. (Prentice Hall, Upper Saddle River, NJ., 2008). Particularly Chap. 7.4: Model selection criteriaGoogle Scholar
  124. 124.
    F. Diebold, Elements of forecasting, 3rd edn. (Thomson/South-Western, Mason, Ohio, 2003)Google Scholar
  125. 125.
    Swarm,, last accessed on March 6, 2012
  126. 126.
    Repast, recursive porous agent simulation toolkit., last accessed on March 6, 2012
  127. 127.
    Netlogo,, last accessed on March 6, 2012
  128. 128.
    Sesam, shell for simulated agent systems., last accessed on March 6, 2012
  129. 129.
    Massive software., last accessed on March 6, 2012
  130. 130.
    Wikipedia: Comparison of agent-based modeling software., last accessed on March 6, 2012
  131. 131.
    S.F. Railsback, S.L. Lytinen, S.K. Jackson, Agent-based simulation platforms: review and development recommendations. Simulation 82(9), 609–623 (2006)Google Scholar
  132. 132.
    CVS Concurrent Version System., last accessed on March 6, 2012
  133. 133.
    Subversion,, last accessed on March 6, 2012
  134. 134.
    Bazaar,, last accessed on March 6, 2012
  135. 135.
    Git - fast version control system.
  136. 136.
    D. Helbing, A. Johansson, Pedestrian, crowd and evacuation dynamics, in Encyclopedia of Complexity and Systems Science (Springer, Berlin, 2010), pp. 6476–6495Google Scholar
  137. 137.
    D. Helbing, A. Johansson, L. Buzna, Modelisation Du Traffic - Actes du groupe de travail, chapter New design solutions for pedestrian facilities based on recent empirical results and computer simulations, pp. 67–88. (2003) Actes No. 104Google Scholar
  138. 138.
    E. Brockfeld, R.D. Kuehne, P. Wagner, Toward benchmarking of microscopic traffic flow models. Transport. Res. Record 1852, 124–129 (2004)Google Scholar
  139. 139.
    E. Brockfeld, R.D. Kuehne, P. Wagner, Calibration and validation of microscopic traffic flow models. Transport. Res. Record 1876, 62–70 (2004)Google Scholar
  140. 140.
    D. Helbing, M. Schreckenberg, Cellular automata simulating experimental properties of traffic flows. Phys. Rev. E 59, R2505–R2508 (2010)Google Scholar
  141. 141.
    A.G. Hoekstra, J. Kroc, P.M.A. Sloot (eds.), chapter Game theoretical interactions of moving agents, in Simulating Complex Systems by Cellular Automata (Springer, Berlin, 2010), pp.219–239Google Scholar
  142. 142.
    D. Helbing, W. Yu, The future of social experimenting. PNAS 107(12), 5265–5266 (2010)Google Scholar
  143. 143.
    D. Helbing, T. Platkowski, Self-organization in space and induced by fluctuations. Int. J. Chaos Theor. Appl. 5(4), (2000)Google Scholar
  144. 144.
    R.J. LeVeque, Numerical Methods for Conservation Laws. (Birkhauser, Basel, 1992)Google Scholar
  145. 145.
    K. De Jong, Evolutionary computation: a unified approach, in GECCO ’08: Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary computation (ACM, New York, NY, USA, 2008), pp. 2245–2258Google Scholar
  146. 146.
    P. Ciaccia, M. Patella, P. Zezula, M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. VLDB J. 426–435 (1997)Google Scholar
  147. 147.
    L.A. Wolsey, An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)Google Scholar
  148. 148.
    D. Freedman, R. Pisani, R. Purves, Statistics. (W. W. Norton & Company, New York, 1997)Google Scholar
  149. 149.
    E.C. Zeeman, Catastrophe Theory: Selected Papers, 1972–1977 (Addison-Wesley, 1980)Google Scholar
  150. 150.
    T.S. Kuhn, The Structure of Scientific Revolutions. (University Of Chicago Press, Chicago, 1962)Google Scholar
  151. 151.
    D. Helbing, A. Johansson, Evolutionary dynamics of populations with conflicting interactions: Classification and analytical treatment considering asymmetry and power. Phys. Rev. E 81, 016112+ (2010)Google Scholar
  152. 152.
    D. Helbing, A. Johansson, Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach. PLoS ONE 5, e12530 (2010)Google Scholar
  153. 153.
    Benedikt Herrmann, Christian Thöni, and Simon Gächter. Antisocial Punishment Across Societies. Science 319(5868), 1362–1367 (2008)Google Scholar
  154. 154.
    D. Helbing, Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes. (Springer, Berlin, 2010)Google Scholar
  155. 155.
    V. Nemytsky, V. Stepanov, Qualitative theory of differential equations. (Princeton University Press, Princeton NJ, 1960)Google Scholar
  156. 156.
    R. Albert, H. Jeong, A.-L. Barabasi, Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)Google Scholar
  157. 157.
    M. Olson, The Logic of Collective Action : Public Goods and the Theory of Groups. Harvard economic studies, v. 124. (Harvard University Press, Cambridge, MA, 1971)Google Scholar
  158. 158.
    M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe, G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. Biol. Sci. B: Biol. Sci. 276(1668), 2755–2762 (2009)Google Scholar
  159. 159.
    M. Treiber, A. Kesting, D. Helbing, Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts. Transport. Res. B: Methodological, 44(8–9), 983–1000 (2010)Google Scholar
  160. 160.
    A.-L. Barabási, R. Albert, Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)Google Scholar
  161. 161.
    John P. Ioannidis, Why Most Published Research Findings Are False. PLoS Med. 2(8), e124+ (2005)Google Scholar
  162. 162.
    I. Fisher, The Theory of Interest. (Augustus M. Kelley Publishers, NJ, 1930)Google Scholar
  163. 163.
    B.B. Mandelbrot, The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)Google Scholar
  164. 164.
    R.N. Mantegna, E.H. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance. (Cambridge University Press, New York, 1999)Google Scholar
  165. 165.
    V. Pareto, Translation of Manuale di economia politica (“Manual of political economy”). (A.M. Kelley, New york, 1971)Google Scholar
  166. 166.
    George Zipf, The economy of geography (Addison-Wesley Publishing Co. Inc, Cambridge, 1949), pp.347–415Google Scholar
  167. 167.
    Ravenstein E. The birthplaces of the people and the laws of migration. The Geographical Magazine III, pp. 173–177, 201–206, 229–233 (1876)Google Scholar
  168. 168.
    G.K. Zipf, The p1 p2/d hypothesis: on the intercity movement of persons. Am. Soc. Rev. 11, 677–686 (1946)Google Scholar
  169. 169.
    J. Tinbergen, Shaping the world economy: suggestions for an international economic policy. (Twentieth Century Fund, New York, 1962)Google Scholar
  170. 170.
    C.A.E. Goodhart, Monetary relationships: a view from Threadneedle Street. Papers monetary Econ. 1 (1975)Google Scholar
  171. 171.
    J. Danielsson, The emperor has no clothes: Limits to risk modelling. J. Bank. Finance 26(7), 1273–1296 (2002)Google Scholar
  172. 172.
    D. Helbing, M. Treiber, N.J. Saam, Analytical investigation of innovation dynamics considering stochasticity in the evaluation of fitness. Phys. Rev. E 71, 067101 (2005)Google Scholar
  173. 173.
    D. Helbing, H. Ammoser, C. Kuehnert, chapter Disasters as extreme events and the importance of network interactions for disaster response management, in Extreme Events in Nature and Society (Springer, Berlin, 2005), pp. 319–348Google Scholar
  174. 174.
    Verfahren zur Koordination von vernetzten Abfertigungsprozessen oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes, (2010), see, last accessed on March 6, 2012
  175. 175.
    D. Helbing, A. Deutsch, S Diez, K Peters, Y Kalaidzidis, K. Padberg-Gehle, S. Laemmer, A. Johansson, G. Breier, F. Schulze, M. Zerial, Biologistics and the struggle for efficiency: concepts and perpesctives. Adv. Complex Syst. 12(06), 533+ (2009)Google Scholar
  176. 176.
    L. Hurwicz, Optimality and informational efficiency in resource allocation processes, in Mathematical Methods in the Social Sciences, ed. by K.J. Arrow, S. Karlin, P. Suppes (Stanford University Press, Stanford, CA, 1960), pp. 27–46Google Scholar
  177. 177.
    A. Kesting, M. Treiber, M. Schonhof, D. Helbing, Adaptive cruise control design for active congestion avoidance. Transport. Res. C Emerg. Tech. 16(6), 668–683 (2008)Google Scholar
  178. 178.
    D. Helbing, chapter Dynamic decision behavior and optimal guidance through information services: Models and experiments, in Human Behaviour and Traffic Networks (Springer, Berlin, 2004), pp. 47–95Google Scholar
  179. 179.
    D. Helbing, M. Christen, Physik der Finanzmärkte (Wirtschaftswoche, December 22, 2010)Google Scholar
  180. 180.
    N. Wiener, Cybernetics, Second Edition: or the Control and Communication in the Animal and the Machine. (The MIT Press, Cambridge, MA, 1965)Google Scholar
  181. 181.
    B. Fabien, Analytical System Dynamics: Modeling and Simulation. (Springer, Berlin, 2008)Google Scholar
  182. 182.
    S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2nd edn. (Wiley-Interscience, New York, 2005)Google Scholar
  183. 183.
    A.L. Fradkov, I.V. Miroshnik, V.O. Nikiforov, Nonlinear and Adaptive Control of Complex Systems. (Springer, Berlin, 1999)Google Scholar
  184. 184.
    A. Johansson, D. Helbing, P. Shukla, Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv. Complex Syst. 10, 271–288 (2007)Google Scholar
  185. 185.
    Google flu trends., last accessed on March 6, 2012
  186. 186.
    J. Vernon Henderson, A. Storeygard, D.N. Weil, Measuring economic growth from outer space. Technical Report 15199, National Bureau of Economic Research, July (2009)
  187. 187.
    N.A. Christakis, J.H. Fowler, Social network sensors for early detection of contagious outbreaks. PloS one 5(9), e12948+, September (2010)Google Scholar
  188. 188.
    L. Buzna, K. Peters, H. Ammoser, C. Kuehnert, D. Helbing, Efficient response to cascading disaster spreading. Phys. Rev. E 75, 056107 (2006)Google Scholar
  189. 189.
    D. Helbing, S. Balietti, From social simulation to intgrative system design. visioneer white paper, 2010.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CLU E1ETH ZurichZurichSwitzerland

Personalised recommendations