Advertisement

Eurofuse 2011 pp 339-350 | Cite as

Histograms for Fuzzy Color Spaces

  • J. Chamorro-Martínez
  • D. Sánchez
  • J. M. Soto-Hidalgo
  • P. Martínez-Jiménez
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 107)

Abstract

In this paper we introduce two kinds of fuzzy histograms on the basis of fuzzy colors in a fuzzy color space and the notion of gradual number by Dubois and Prade. Fuzzy color spaces are a collection of fuzzy sets providing a suitable, conceptual quantization with soft boundaries of crisp color spaces. Gradual numbers assign numbers to values of a relevance scale, typically [0,1]. Contrary to convex fuzzy subsets of numbers (called fuzzy numbers, but corresponding to fuzzy intervals as an assignment of intervals to values of [0,1]), they provide a more precise representation of the cardinality of a fuzzy set. Histograms based on gradual numbers are particularly well-suited for serving as input to another process. On the contrary, they are not the best choice when showing the information to a human user. For this second case, linguistic labels represented by fuzzy numbers are a better alternative, so we define linguistic histograms as an assignment of linguistic labels to each fuzzy color. We provide a way to calculate linguistic histograms based on the compatibility between gradual numbers and linguistic labels. We illustrate our proposals with some examples.

Keywords

Fuzzy Number Color Space Voronoi Diagram Color Histogram Fuzzy Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chamorro-Martínez, J., Sánchez, D., Soto-Hidalgo, J.M.: A novel histogram definition for fuzzy color spaces. In: Proceedings IEEE WCCI 2008, pp. 2149–2156 (2008)Google Scholar
  2. 2.
    Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A.: A probabilistic definition of a nonconvex fuzzy cardinality. Fuzzy Sets and Systems 126(2), 41–54 (2002)CrossRefGoogle Scholar
  3. 3.
    Delgado, M., Martín-Bautista, M.J., Sánchez, D., Vila, M.A.: Fuzzy integers: Representation and arithmetic. In: Proceedings of IFSA 2005 (2005)Google Scholar
  4. 4.
    Doulamis, A., Doulamis, N.: Fuzzy histograms for efficient visual content representation: application to content-based image retrieval. In: IEEE International Conference on Multimedia and Expo., pp. 893–896 (August 2001)Google Scholar
  5. 5.
    Dubois, D., Prade, H.: Fuzzy cardinality and the modeling of imprecise quantification. Fuzzy Sets and Systems 16, 199–230 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Fuzzy intervals versus fuzzy numbers: Is there a missing concept in fuzzy set theory? In: Linz Seminar 2005 Abstracts, pp. 45–46 (2005)Google Scholar
  7. 7.
    Dubois, D., Prade, H.: Gradual elements in a fuzzy set. Soft Computing 12, 165–175 (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dubois, D., Prade, H., Sudkamp, T.: A discussion of indices for the evaluation of fuzzy associations in relational databases. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 111–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Han, J., Kai-Kuang: Fuzzy color histogram and its use in color image retrieval. IEEE Transactions on Image Processing 11(8), 944–952 (2002)CrossRefGoogle Scholar
  10. 10.
    Hildebrand, L., Fathi, M.: Knowledge-based fuzzy color processing. IEEE. Tran. on Systems, Man and Cybernetics. Part C 34(4), 499–505 (2004)CrossRefGoogle Scholar
  11. 11.
    Kelly, K.L., Judd, D.B.: Color: universal language and dictionary of names. National Bureau of Standards (USA) (440) (1976)Google Scholar
  12. 12.
    Louverdis, G., Andreadis, I., Tsalides, P.: New fuzzy model for morphological colour image processing. In: IEEE Proc. Vis. Image Signal Proc., vol. 149, pp. 129–139 (2002)Google Scholar
  13. 13.
    De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control 20, 301–312 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mitsuishi, T., Kayaki, N., Saigusa, K.: Color construction using dual fuzzy system. In: IEEE Int. Sym. Comp. Intelligence for Measurement Sys. and Appl., pp. 136–139 (2003)Google Scholar
  15. 15.
    Romani, S., Sobrebilla, P., Montseny, E.: Obtaining the relevant colors of an image through stability-based fuzzy color histograms. In: IEEE International Conference on Fuzzy Systems, St. Louis, Missouri (USA), vol. 2, pp. 914–919 (May 2003)Google Scholar
  16. 16.
    Runkler, T.A.: Fuzzy histograms and fuzzy chi-squared tests for independence. In: IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1361–1366 (2004)Google Scholar
  17. 17.
    Sánchez, D., Delgado, M., Vila, M.A.: RL-numbers: An alternative to fuzzy numbers for the representation of imprecise quantities. In: Proc. Fuzz-IEEE 2008, pp. 2058–2065 (2008)Google Scholar
  18. 18.
    Sánchez, D., Delgado, M., Vila, M.A.: Fuzzy quantification using restriction levels. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp. 28–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Seaborn, M., Hepplewhite, L., Stonham, J.: Fuzzy colour category map for the measurement of colour similarity and dissimilarity. Pattern Recognition 38(4), 165–177 (2005)zbMATHGoogle Scholar
  20. 20.
    Soto-Hidalgo, J.M., Chamorro-Martínez, J., Sánchez, D.: A new approach for defining a fuzzy color space. In: Proceedings IEEE WCCI 2010, pp. 292–297 (2010)Google Scholar
  21. 21.
    Sugano, N.: Color-naming system using fuzzy set theoretical approach. In: IEEE Int. Conf. on Fuzzy Systems, pp. 81–84 (2001)Google Scholar
  22. 22.
    Wygralak, M.: Cardinalities of Fuzzy Sets. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  23. 23.
    Zadeh, L.A.: A theory of approximate reasoning. Machine Intelligence 9, 149–194 (1979)Google Scholar
  24. 24.
    Zhu, H., Zhang, H., Yu, Y.: Deep into color names: Matching color descriptions by their fuzzy semantics. In: Euzenat, J., Domingue, J. (eds.) AIMSA 2006. LNCS (LNAI), vol. 4183, pp. 138–149. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. Chamorro-Martínez
    • 1
  • D. Sánchez
    • 1
    • 2
  • J. M. Soto-Hidalgo
    • 3
  • P. Martínez-Jiménez
    • 1
  1. 1.Dept. Computer Science and A.I.University of GranadaSpain
  2. 2.European Centre for Soft ComputingMieresSpain
  3. 3.Department of Computer Architecture, Electronics and Electronic TechnologyUniversity of CórdobaSpain

Personalised recommendations