Using Aggregation Functions for Measuring Social Inequality and Poverty

  • José Luis García-Lapresta
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 107)

Abstract

Poverty reduction is without doubt a goal of development policy in most countries. To evaluate the evolution of poverty over time in some particular region, the differences of poverty across different countries or the effect of different policies in the alleviation of poverty, one should be first able to measure poverty.

Keywords

Income Inequality Poverty Line Gini Index Aggregation Function Poverty Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aristondo, O., García-Lapresta, J.L., Lasso de la Vega, C., Marques Pereira, R.A.: The Gini index and the consistent measurement of inequality among the poor through the dual decomposition of OWA operators (submitted)Google Scholar
  2. 2.
    Aristondo, O., Lasso de la Vega, C., Urrutia, A.M.: A new multiplicative decomposition for the Foster-Greer-Thorbecke poverty indices. Bulletin of Economic Research 62, 259–267 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Calvo, T., Kolesárova, A.: Komorníková, M., Mesiar, R.: Aggregation operators: Properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators: New Trends and Applications, pp. 3–104. Physica-Verlag, Heidelberg (2002)Google Scholar
  5. 5.
    Chakravarty, S.R.: Inequality, Polarization and Poverty: Advances in Distributional Analysis. Springer, New York (2009)MATHCrossRefGoogle Scholar
  6. 6.
    Clark, S., Hemming, R., Ulph, D.: On indices for the measurement of poverty. Economic Journal 91, 515–526 (1981)CrossRefGoogle Scholar
  7. 7.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)MATHGoogle Scholar
  8. 8.
    García-Lapresta, J.L., Lasso de la Vega, C., Marques Pereira, R.A., Urrutia, A.M.: A class of poverty measures induced by the dual decomposition of aggregation functions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 18, 493–511 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    García-Lapresta, J.L., Marques Pereira, R.A.: The self-dual core and the anti-self-dual remainder of an aggregation operator. Fuzzy Sets and Systems 159, 47–62 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gini, C.: Variabilità e Mutabilità. Tipografia di Paolo Cuppini, Bologna (1912)Google Scholar
  11. 11.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  12. 12.
    Kakwani, N.: On a class of poverty measures. Econometrica 48, 437–446 (1980)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kakwani, N.: Inequality, Welfare and Poverty. In: Silber, J. (ed.) Handbook of Income Inequality Measurement, pp. 599–628. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  14. 14.
    Lambert, P., Zheng, B.: On the consistent measurement of achievement and shortfall inequality. Journal of Health Economics 30, 214–219 (2011)CrossRefGoogle Scholar
  15. 15.
    Maes, K., Saminger, S., De Baets, B.: Representation and construction of self-dual aggregation operators. European Journal of Operational Research 177, 472–487 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Osberg, L., Xu, K.: International comparisons of poverty intensity: Index decomposition and bootstrap inference. The Journal of Human Resources 35, 1–81 (2000)CrossRefGoogle Scholar
  17. 17.
    Sen, A.K.: Poverty: An ordinal approach to measurement. Econometrica 44, 219–231 (1976)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sen, A.K.: Issues in the measurement of poverty. Scandinavian Journal of Economics 81, 285–307 (1979)CrossRefGoogle Scholar
  19. 19.
    Shorrocks, A.: Revisiting the Sen poverty index. Econometrica 63, 1225–1230 (1995)MATHCrossRefGoogle Scholar
  20. 20.
    Silber, J.: Handbook on Income Inequality. Kluwer Academic Press, Dordrecht (1999)Google Scholar
  21. 21.
    Takayama, N.: Poverty, income inequality, and their measures: Professor Sen’s axiomatic approach reconsidered. Econometrica 47, 747–759 (1979)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Thon, D.: On measuring poverty. Review of Income and Wealth 25, 429–440 (1979)CrossRefGoogle Scholar
  23. 23.
    Xu, K., Osberg, L.: The social welfare implications, decomposability, and geometry of the Sen family of poverty indices. Canadian Journal of Economics 35, 138–152 (2002)CrossRefGoogle Scholar
  24. 24.
    Yager, R.R.: Ordered weighted averaging operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics 8, 183–190 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • José Luis García-Lapresta
    • 1
  1. 1.PRESAD Research Group, Departamento de Economía AplicadaUniversidad ValladolidValladolidSpain

Personalised recommendations