Advertisement

Eurofuse 2011 pp 193-205 | Cite as

On the Semantics of Bipolarity and Fuzziness

  • J. Tinguaro Rodríguez
  • Camilo A. Franco
  • Javier Montero
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 107)

Abstract

This paper analyzes the relationship between fuzziness and bipolarity, notions which were devised to address different kinds of uncertainty: linguistic imprecision, in the former, and knowledge relevance and character or polarity, in the latter. Although different types of fuzziness and bipolarity have been defined, these relations are not always clear. This paper proposes the use of four-valued extensions to provide a formal method to rigorously define and compare the semantics and logical structure of diverse combinations of fuzziness and bipolarity types. As a result, this paper claims that these notions and their different types are independent and not semantically equivalent despite its possible formal equivalence.

Keywords

Fuzzy Logic Prospect Theory Negative Information Cumulative Prospect Theory Evidence Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, K.T.: Intuitionistic Fuzzy-Sets. Fuzzy Set Syst., 20 (1) 87–96 (1986)Google Scholar
  2. 2.
    Atanassov, K.T., Gargov, G.: Interval Valued Intuitionistic Fuzzy Sets. F Set Syst., 31(3) 343–349 (1989)Google Scholar
  3. 3.
    Atanassov, K.T., Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade’s Paper, H.: Terminological difficulties in fuzzy set theory - the case of Intuitionistic fuzzy sets. Fuzzy Set Syst. 156(3), 496–499 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Beringer, J., Hullermeier, E.: Case-based learning in a bipolar possibilistic framework. Int.l J. Intell. Syst. 23(10), 1119–1134 (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Birkhoff, G.: Lattice theory, vol. 25. Amer. Math. Soc. Colloq. Publ, New York (1948)zbMATHGoogle Scholar
  6. 6.
    Bustince, H., Pagola, M., Barrenechea, E., Fernandez, J., Melo-Pinto, P., Couto, P., Tizhoosh, H.R., Montero, J.: Ignorance functions. An Application to the Calculation of the Threshold in Prostate Ultrasound Images, Fuzzy Set Syst. 161(1), 20–36 (2010)MathSciNetGoogle Scholar
  7. 7.
    Cacioppo, J.T., Gardner, W.L., Berntson, G.G.: Beyond bipolar conceptualizations and measures: The case of attitudes and evaluative space. Pers Soc. Psychol. Rev. 1, 3–25 (1997)CrossRefGoogle Scholar
  8. 8.
    Cornelis, C., Atanassov, K., Kerre, E.: Intuitionistic fuzzy sets and interval-valued fuzzy sets: a critical comparison. In: Proc. Eusflat 2003, pp. 159–163 (2003)Google Scholar
  9. 9.
    Deschrijver, G., Kerre, E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Set Syst. 133, 227–235 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory - The case of Intuitionistic Fuzzy Sets. Fuzzy Set Syst. 156(3), 485–491 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: Special issue on bipolar representations of information and preference part 1A: Cognition and decision - Foreword. Int. J. Intell Syst. 23(8), 863–865 (2008)CrossRefGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. Int. J. Intell Syst. 23(8), 866–877 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. Fuzzy Set Syst. 160(10), 1355–1366 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support. Kluwer Academic, Dordrecht (1994)zbMATHGoogle Scholar
  15. 15.
    Franco, C.A., Montero, J., Rodriguez, J.T.: Aggregation Weights for a Fuzzy Preference-Aversion Model. In: Procs. of the WConSC 2011, pp. 199–206 (2011)Google Scholar
  16. 16.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. A Quarterly Journal of Operations Research 6, 1–44 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Grattan-Guinness, I.: Fuzzy membership mapped onto interval and many-valued quantities, Z. Z. Math. Logik Grundlag. Mathe. 22, 149–160 (1975)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hullermeier, E.: Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy Set Syst. 156(3), 387–406 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kacprzyk, J., Zadrozny, S.: Soft computing and web intelligence for supporting consensus reaching. Soft Computing 14(8), 833–846 (2010)CrossRefGoogle Scholar
  21. 21.
    Kahneman, D., Tversky, A.: Prospect theory: decision analysis under risk. Econom. 47, 263–291 (1979)zbMATHCrossRefGoogle Scholar
  22. 22.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  23. 23.
    Labreuche, C., Grabisch, M.: The representation of conditional relative importance between criteria. Annals of Operations Research 154, 93–122 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Mamdani, E.H.: Application of Fuzzy Algorithms for the Control of a Dynamic Plant. Proc. IEEE 121, 1585–1588 (1974)Google Scholar
  25. 25.
    Medin, D., Schwanenflugel, P.: Linear separability in classification learning. J. of Experimental Psychology: Human Learning & Memory 7, 355–368 (1981)CrossRefGoogle Scholar
  26. 26.
    Montero, J.: Arrow’s theorem under fuzzy rationality. Behavioral Science 32, 267–273 (1987)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Fuzzy Set Syst. 158(22), 2439–2442 (2007)CrossRefGoogle Scholar
  28. 28.
    Osgood, C.E., Suci, G.J., Tannenbaum, P.H.: The measurement of meaning. Chicago, UIP (1957)Google Scholar
  29. 29.
    Öztürk, M., Tsoukiàs, A.: Modelling uncertain positive and negative reasons in decision aiding. Decision Support Systems 43(4), 1512–1526 (2007)CrossRefGoogle Scholar
  30. 30.
    Rodriguez, J.T., Vitoriano, B., Montero, J.: Rule-based classification by means of bipolar criteria. In: IEEE MCDM, pp. 197–204 (2011)Google Scholar
  31. 31.
    Rodriguez, J.T., Franco, C.A., Vitoriano, B., Montero, J.: An axiomatic approach to the notion of semantic antagonism. In: Procs. of the IFSA-AFSS 2011, FT104-1/6 (2011)Google Scholar
  32. 32.
    Roy, B.: Ranking and Choice in Pace of Multiple Points of View (Electre Method). Revue Francaise D Informatique De Recherche Operationnelle 2(8), 57–75 (1968)Google Scholar
  33. 33.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North–Holland, Elsevier, New York (1983)Google Scholar
  34. 34.
    Trillas, E.: On the use of words and fuzzy sets. Information Sciences 176(11), 1463–1487 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Tsoukiàs, A.: A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics. Foundations of Computing and Decision Sciences 12, 85–108 (2002)Google Scholar
  36. 36.
    Turunen, E., Ozturk, M., Tsoukiàs, A.: Paraconsistent semantics for Pavelka style fuzzy sentential logic. Fuzzy Set Syst. 161(14), 1926–1940 (2010)zbMATHCrossRefGoogle Scholar
  37. 37.
    Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty 5, 297–323 (1992)zbMATHCrossRefGoogle Scholar
  38. 38.
    Victor, P., Cornelis, C., Cock, M.D., Teredesai, A.: Trust- and distrust-based recommendations for controversial reviews. In: Proc. of WEBSCI (2009)Google Scholar
  39. 39.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zadeh, L.A.: The Concept of a Linguistic Variable and Its Application to Approximate Reasoning. Information Sciences 9(1), 43–80 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. Tinguaro Rodríguez
    • 1
  • Camilo A. Franco
    • 1
  • Javier Montero
    • 1
  1. 1.Faculty of MathematicsComplutense University of MadridMadridSpain

Personalised recommendations