Eurofuse 2011 pp 179-191 | Cite as

Fuzzy Ontologies to Represent Background Knowledge: Some Experimental Results on Modelling Climate Change Knowledge

  • Emilio Fdez-Viñas
  • Mateus Ferreira-Satler
  • Francisco P. Romero
  • Jesus Serrano-Guerrero
  • Jose A. Olivas
  • Natalia Saavedra
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 107)

Abstract

Ontologies represent a method of sharing and reusing knowledge on the semantic web. Moreover, fuzzy ontologies, i.e., the combination of fuzzy logic and ontologies, may be an interesting tool for representing domain knowledge with the aim of solving problems where uncertainty is present. This paper presents three fuzzy-based ontology models for knowledge representation. These ontologies have been obtained after the automatic analysis of a collection of relevant documents that are related to a specific subject. Some experiments have been carried out to illustrate the feasibility of these approaches.

Keywords

Information Retrieval Relatedness Degree Fuzzy Relation Source Document Document Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sendhilkumar, S., Geetha, T.V.: Personalized ontology for web search personalization. In: COMPUTE 2008: Proceedings of the 1st Bangalore Annual Compute Conference, pp. 1–7. ACM, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Welty, C.: Ontology Research. AI Magazine 24(3), 11–12 (2003)Google Scholar
  3. 3.
    Lau, R.: Fuzzy Domain Ontology Discovery for Business Knowledge Management. IEEE Intelligent Informatics Bulletin 8(1), 29–41 (2007)Google Scholar
  4. 4.
    Deborah, L.: McGuinness and Frank van Harmelen. OWL Web Ontology Language Overview. Technical Report REC-owl-features-20040210, W3C (2004)Google Scholar
  5. 5.
    Solskinnsbakk, G., Gulla, J.A.: Combining ontological profiles with context in information retrieval. Data Knowl. Eng. 69(3), 251–260 (2010)CrossRefGoogle Scholar
  6. 6.
    Tho, Q.T., Hui, S.C., Cao, T.H.: FOGA: A Fuzzy Ontology Generation Framework for Scholarly Semantic Web. In: Proceedings of the 2004 Knowledge Discovery and Ontologies Workshop (KDO 2004), Pisa, Italy (2004)Google Scholar
  7. 7.
    Ogawa, Y., Morita, T., Kobayashi, K.: A fuzzy document retrieval system using the keyword connection matrix and a learning method. Fuzzy Sets and Systems 39(2), 163–179 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Romero, F.P., Mateus, F.-S., Olivas, J.A., Jesus, S.-G.: PLINIO: Observatorio de Efectos del Cambio Climático basado en la extracción inteligente de Información en Internet. In: Actas del III Simposio sobre Lógica Fuzzy y Soft Computing, LFSC - CEDI 2010 (EUSFLAT), Valencia, Spain, pp. 385–392 (2010)Google Scholar
  9. 9.
    Hrebicek, J., Kubasek, M.: EnviWeb and Environmental Web Services: Case Study of an Environmental Web Portal, pp. 21–24. Springer, London (2004)Google Scholar
  10. 10.
    Kubasek, M.: Semantic web technology - ontology extraction from environmental web. In: 17th International Conference Informatics for Environmental Protection, The Information Society and Enlargement of the European Union, Cottbus, Germany, Metropolis, pp. 905–909 (2003)Google Scholar
  11. 11.
    Nathalie, A.-G., Mothe, J.: Ontologies as background knowledge to explore document collections. In: Seventh Triennial RIAO Conference: Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval, pp. 129–142 (2004)Google Scholar
  12. 12.
    Sabou, M., D’Aquin, M., Motta, E.: Exploring the Semantic Web as Background Knowledge for Ontology Matching. Journal on Data Semantics 11, 156–190 (2006)Google Scholar
  13. 13.
    Nikravesh, M.: Concept-based search and questionnaire systems. In: Nikravesh, M., Kacprzyk, J., Zadeh, L. (eds.) Forging New Frontiers: Fuzzy Pioneers I. Studies in Fuzziness and Soft Computing, vol. 217, pp. 193–215. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Lau, R.Y.K., Song, D., Li, Y., Cheung, T.C.H., Hao, J.-X.: Toward a Fuzzy Domain Ontology Extraction Method for Adaptive e-Learning. IEEE Transactions on Knowledge and Data Engineering 21(6), 800–813 (2009)CrossRefGoogle Scholar
  15. 15.
    Calegari, S., Sanchez, E.: Object-fuzzy concept network: An enrichment of ontologies in semantic information retrieval. Journal of the American Society for Information Science and Technology 59(13), 1532–2890 (2008)CrossRefGoogle Scholar
  16. 16.
    Emilio, F.-V., Jesús, S.-G., Olivas, J.A., De La Mata, J., Soto, A.: FOG: Arquitectura flexible para la generación automática de ontologías. In: ESTYLF 2010, Huelva, Spain (2010)Google Scholar
  17. 17.
    Horng, Y.-J., Chen, S.-M., Lee, C.-H.: Automatically Constructing Multi-Relationship Fuzzy Concept Networks for Document Retrieval. Applied Artificial Intelligence 17(4), 303–328 (2003)CrossRefGoogle Scholar
  18. 18.
    Korfhage, R.R.: Information storage and retrieval. John Wiley & Sons, Chichester (1997)Google Scholar
  19. 19.
    David, A., Hull, D.A.: Stemming algorithms: A case study for detailed evaluation. J. Am. Soc. Inf. Sci. 47, 70–84 (1996)CrossRefGoogle Scholar
  20. 20.
    Mateus, F.-S., Romero, F.P., Olivas, J.A., Braga, J.L.: A fuzzy ontology and user profiles approach to improve semantic information filtering. In: Proceedings of the 2009 Int. Conf. on Artificial Intelligence, ICAI 2009, pp. 849–854 (2009)Google Scholar
  21. 21.
    Mateus, F.-S., Romero, F.P., Menndez, V.H., Zapata, A., Prieto, M.E.: A fuzzy ontology approach to represent user profiles in e-learning environments. In: FUZZ-IEEE 2010 IEEE International Conference on Fuzzy Systems - WCCI 2010 IEEE World Congress on Computational Intelligence, Barcelona (Spain), pp. 161–168 (2010)Google Scholar
  22. 22.
    Ning, H., Shihan, D.: Structure-based ontology evaluation. In: ICEBE 2006: Proceedings of the IEEE International Conference on e-Business Engineering, pp. 132–137. IEEE Comp. Soc, USA (2006)CrossRefGoogle Scholar
  23. 23.
    Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet:similarity: measuring the relatedness of concepts. In: HLT-NAACL 2004: Demonstration Papers at HLT-NAACL 2004 on XX, pp. 38–41. Association for Computational Linguistics, Massachusetts (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emilio Fdez-Viñas
    • 1
  • Mateus Ferreira-Satler
    • 1
  • Francisco P. Romero
    • 1
  • Jesus Serrano-Guerrero
    • 1
  • Jose A. Olivas
    • 1
  • Natalia Saavedra
    • 1
  1. 1.Dept. of Information Systems and TechnologiesUniversity of Castilla La ManchaCiudad RealSpain

Personalised recommendations