Skip to main content

The Role of Fragmentation on the Formation of Homomeric Protein Complexes

  • Chapter
  • First Online:
Book cover Formation and Cooperative Behaviour of Protein Complexes on the Cell Membrane

Part of the book series: Springer Theses ((Springer Theses))

  • 524 Accesses

Abstract

It is known that many protein complexes are made of smaller identical subunits. The mechanism of assembly of those subunits to form a complete complex is still not well understood. In this work we use a Smoluchowski coagulation equation as a mean-field approximation, and study the efficiency of the process of formation of membrane protein complexes by considering both irreversible aggregation and fragmentation. Our objective is to analyze the possible ways biological organisms adapted to avoid wastage, and achieve a fast formation of the required number of complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.pdb.org

  2. 2.

    http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html

  3. 3.

    The primary structure of a protein is its amino acid sequence. The secondary structure the \(\alpha\)-helices and \(\beta\)-sheets. The tertiary represents the chain fold. The quaternary structure is the assembly of those folded polypeptide chains.

  4. 4.

    In this notation C represents the cyclical symmetry of the protein and n the number of subunits that compose this protein. For example: \(C_6\) is a cyclic hexamer.

  5. 5.

    The mechanosensitive channels are described in detail in this chapter.

  6. 6.

    This operator corresponds to the Laplace operator on a curved surface.

  7. 7.

    The maximum time that it takes for the particle to find the cap corresponds to the starting point \(\theta = \pi\) \(W(\pi) = {\frac{2R^2}{D}} \hbox{ln} \left({\frac{R}{r}}\right)\!.\)

References

  1. Ali, M.H., Imperiali, B.: Protein oligomerization: how and why. Bioorg. Med. Chem. 13(17), 5013–5020 (2005)

    Article  Google Scholar 

  2. Blatz, P.J., Tobolsky, A.V.: Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena. J. Phys. Chem. 49(2), 77–80 (1945)

    Article  Google Scholar 

  3. Blundell, T.L., Srinivasan, N.: Symmetry, stability, and dynamics of multidomain and multicomponent protein systems. Proc. Natl. Acad. Sci. U. S. A. 93(25), 14243–14248 (1996)

    Article  ADS  Google Scholar 

  4. Bowie, J.U.: Membrane protein folding: how important are hydrogen bonds? Curr. Opin. Struct. Biol. (2010, in press, corrected proof)

    Google Scholar 

  5. Lo Conte, L., Chothia, C., Janin, J.: The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285(5), 2177–2198 (1999)

    Article  Google Scholar 

  6. Davies, S.C.: Self-similar behaviour in the coagulation equations. J. Eng. Math. 36, 57–88 (1999)

    Article  ADS  MATH  Google Scholar 

  7. Dayhoff, J.E., Shoemaker, B.A., Bryant, S.H., Panchenko, A.R.: Evolution of protein binding modes in homooligomers. J. Mol. Biol. 395(4), 860–870 (2010)

    Article  Google Scholar 

  8. Hwang, H., Pierce, B., Mintseris, J., Janin, J., Weng, Z.: Protein-protein docking benchmark version 3.0. Proteins 73(3), 705–709 (2008)

    Article  Google Scholar 

  9. Janin, J., Bahadur, R.P., Chakrabarti, P.: Protein-protein interaction and quaternary structure. Q. Rev. Biophys. 41(2), 133–180 (2008)

    Article  Google Scholar 

  10. Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  11. Levy, E.D., Pereira-Leal, J.B.: Evolution and dynamics of protein interactions and networks. Curr. Opin. Struct. Biol. 18(3), 349–357 (2008)

    Article  Google Scholar 

  12. Levy, E.D., Erba, E.B., Robinson, C.V.: Assembly reflects evolution of protein complexes. Nature 453(7199), 1262–1265 (2008)

    Article  ADS  Google Scholar 

  13. Leyvraz, F.: Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383(2–3), 95–212 (2003)

    Article  ADS  Google Scholar 

  14. Leyvraz, F., Tschudi, H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A. Math. Gen. 14(12), 3389–3405 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Lukatsky, D.B., Zeldovich, K.B., Shakhnovich, E.I.: Statistically enhanced self-attraction of random patterns. Phys. Rev. Lett. 97(17), 178101 (2006)

    Article  ADS  Google Scholar 

  16. Lushnikov, A.A.: Exact kinetics of the sol-gel transition. Phys. Rev. E 71(4), 046129 (2005)

    Article  ADS  Google Scholar 

  17. Lushnikov, A.A.: Critical behavior of the particle mass spectra in a family of gelling systems. Phys. Rev. E 76(1), 011120 (2007)

    Article  ADS  Google Scholar 

  18. McLeod, J.B.: On an infinite set of non-linear differential equations. Q. J. Math. 13(1), 119 (1962)

    Article  MathSciNet  Google Scholar 

  19. Pereira-Leal, J.B., Levy, E.D., Kamp, C., Teichmann, S.A.: Evolution of protein complexes by duplication of homomeric interactions. Genome Biol. 8(4), R51 (2007)

    Article  Google Scholar 

  20. Ramadurai, S., Holt, V.K.A., van den Bogaart, G., Killian, J.A., Poolman, B.: Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 131(35), 12650–12656 (2009)

    Article  Google Scholar 

  21. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  22. Saffman, P.G., Delbrück, M.: Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U. S. A. 72(8), 3111–3113 (1975)

    Article  ADS  Google Scholar 

  23. von Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 124–168 (1917)

    Google Scholar 

  24. Tilley, S.J., Saibil, H.R.: The mechanism of pore formation by bacterial toxins. Curr. Opin. Struct. Biol. 16(2), 230–236 (2006)

    Article  Google Scholar 

  25. Villar, G., Wilber, A.W., Williamson, A.J., Thiara, P., Doye, J.P.K., Louis, A.A., Jochum, M.N., Louis, A.C.F., Levy, E.D.: Self-assembly and evolution of homomeric protein complexes. Phys. Rev. Lett. 101(11), 118106 (2009)

    Article  ADS  Google Scholar 

  26. Vinothkumar, K.R., Henderson, R.: Structures of membrane proteins. Q. Rev. Biophys. 43(1), 65–158 (2010)

    Article  Google Scholar 

  27. Wattis, J.A.D.: An introduction to mathematical models of coagulation-fragmentation processes: a discrete deterministic mean-field approach. Phys. D Nonlinear Phenom. 222(1–2), 1–20 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Whitesides, G.M., Boncheva, M.: Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U. S. A. 99(8), 4769–4774 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Guseva .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guseva, K. (2012). The Role of Fragmentation on the Formation of Homomeric Protein Complexes. In: Formation and Cooperative Behaviour of Protein Complexes on the Cell Membrane. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23988-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23988-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23987-8

  • Online ISBN: 978-3-642-23988-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics