A TV Commercial Detection System

  • Yijun Li
  • Suhuai Luo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6988)


Automatic real-time recognition of TV commercials is an essential step for TV broadcast monitoring. It comprises of two basic tasks: rapid detection of known commercials that are stored in a database, and accurate recognition of unknown ones that appear for the first time in TV streaming. In this paper, we present the framework of a TV commercial detection system.


Video Sequence Video Database Audio Information Video Copy Detection Commercial Break 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albiol, A., Fulla, M.J., Albiol, A., Torres, L.: Detection of TV Commercials. In: International Conference on Acoustics, Speech and Signal Processing, pp. 541–544 (2004)Google Scholar
  2. 2.
    Angihotri, L., Dimitrov, N., McGee, T., Jeannin, S., Schaffer, D., Nesvadba, J.: Evolvable Visual Commercial Detector. In: Proc. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 2, pp. 79–84 (2003)Google Scholar
  3. 3.
    Ardizzone, E., et al.: Content-based indexing if image and video database by global and shape features. In: Proc. Of the International Conference on Pattern Recognition (1996)Google Scholar
  4. 4.
    Chang, C.L.E., Wang, J., Wiederhold, G.: Rime: A replicated image detector for the World Wide Web. In: SPIE Multimedia Storage and Archiving Systems III (1998)Google Scholar
  5. 5.
    Chang, H.S., Sull, S., Lee, S.U.: Efficient video indexing scheme for content-based retrieval. IEEE Trans. Circuits Syst. Video Technology (1999)Google Scholar
  6. 6.
    Cheung, S.-C.S., Zakhor, A.: Efficient video similarity measurement and search. In: Proc. of International Conference on Image Processing, British Columbia, Canada, pp. 85–89 (2000)Google Scholar
  7. 7.
    Duan, L.Y., Wang, J., Zheng, Y., Jin, J.S., Lu, H., Xu, C.: Segmentation, categorization, and identification of commercial clips from TV streams using multimodal analysis. In: ACM Multimedia, pp. 201–210 (2006)Google Scholar
  8. 8.
    Gauch, J.M., Shivadas, A.: Finding and identifying unknown commercials using repeated video sequence detection. In: Computer Vision and Image Understanding, vol. 103, pp. 80–88. Elsevier Science Inc., New York (2006)Google Scholar
  9. 9.
    Hampapur, A., Bolle, R.M.: Feature based indexing for media tracking. In: Proc. of Int. Conf. on Multimedia and Expo, pp. 67–70 (2000)Google Scholar
  10. 10.
    Hampapur, A., Hyun, K., Bolle, R.M.: Comparison of sequence matching techniques for video copy detection. In: Proc. SPIE, vol. 4676, pp. 194–201 (2002)Google Scholar
  11. 11.
  12. 12.
    Herley, C.: Accurate repeat finding and object skipping using fingerprints. In: ACM Multimedia, pp. 656–665 (2005)Google Scholar
  13. 13.
    Herley, C.: ARGOS: automatically extracting repeating objects from multimedia streams. IEEE Transactions on Multimedia 8, 115–129 (2006)CrossRefGoogle Scholar
  14. 14.
    Hua, X., Lu, L., Zhang, H.: Robust Learning-Based TV Commercial Detection. In: ICME, pp. 149–152 (2005)Google Scholar
  15. 15.
    Hua, X., Chen, X., Zhang, H.: Robust Video Signature Based on Ordinal Measure. In: International Conference on Image Processing (ICIP), pp. 415–423 (1998)Google Scholar
  16. 16.
  17. 17.
    Kashino, K., Kurozumi, T., Murase, H.: A quick search method for audio and video signals based on histogram pruning. IEEE Transactions on Multimedia 5, 348–357 (2003)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Jin, J.S., Zhou, X.: Video Matching Using Binary Signature. In: Proceedings of the 2005 International Symposium on Intelligent Signal Processing and Communications Systems (ISPAC 2005), Hong Kong, December 13-16, pp. 317–320 (2005)Google Scholar
  19. 19.
    Li, Y., Jin, J.S., Zhou, X.: Matching Commercial Clips from TV Streams Using a Unique,Robust and Compact Signature. In: DICTA, Australia, pp. 266–272 (2005)Google Scholar
  20. 20.
    Lienhart, R., Kuhmunch, C., Effelsberg, W.: On the detection and recognition of television commercials. In: ICMCS, pp. 509–516. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  21. 21.
    O’Connor, B.C.: Selecting key frames of moving image document: A digital environment for analysis and navigation. Microcomputers for Information Management 8(2), 119–133 (1991)Google Scholar
  22. 22.
    Nafeh, J.: Method and Apparatus for Classifying patterns of Television Programs and Commercials Based on Discerning of Broadcast Audio and Video Signal, US patent 5, 343, 251 (1994)Google Scholar
  23. 23.
    Sanchez, J.M., Binefa, X., Radeva, P.: Local colour analysis for scene break detection applied to tv commercial recognition. In: Proc. of Visual 1999, pp. 237–244 (1999)Google Scholar
  24. 24.
    Sanchez, J.M., Binefa, X., Vitria, J.: Shot Partitioning Based Recognition of TV Commercials. In: Multimedia Tools Applications, vol. 18, pp. 233–247. Kluwer Academic Publishers, Hingham (2002)Google Scholar
  25. 25.
    Shen, H.T., Ooi, B.C., Zhou, X.: Towards Effective Indexing for Very Large Video Sequence Database. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 730–741 (2005)Google Scholar
  26. 26.
    Tonomura, Y., Abe, S.: Content orient visual interface using video icons for visual database systems. Journal of Visual Languages and Computing’ 1, 183–198 (1990)CrossRefGoogle Scholar
  27. 27.
    Vilanilam, J.V., Varghese, A.K.: Advertising basics! A resource guide for beginners. Response Books, New Delhi (2004)Google Scholar
  28. 28.
    Wolf, W.: Key frame selection by motion analysis. In: Proc. ICASSP 1996, vol. II, pp. 1228–1231 (1996)Google Scholar
  29. 29.
    Zhuang, Y., Rui, Y., Huang, T.S., Mehrotra, S.: Adaptive key frame extraction using unsupervised clustering. In: Proc. IEEE ICIP 1998, vol. 1, pp. 866–870 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yijun Li
    • 1
  • Suhuai Luo
    • 1
  1. 1.School of Design, Communication and Information TechnologyThe University of NewcastleAustralia

Personalised recommendations