Creating Familiarity through Adaptive Behavior Generation in Human-Agent Interaction

  • Ramin Yaghoubzadeh
  • Stefan Kopp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6895)


Embodied conversational agents should make use of an adaptive behavior generation mechanism which is able to gradually refine its repertoire to behaviors the individual user understands and accepts. We present a probabilistic model that takes into account possible socio-communicative effects of utterances while selecting the behavioral form.


Behavior generation Familiarity Addressee design Personalized communication Adaptivity Social intentions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann, K., Kopp, S., Eyssel, F.: Individualized gesturing outperforms average gesturing – evaluating gesture production in virtual humans. In: Safonova, A. (ed.) IVA 2010. LNCS, vol. 6356, pp. 104–117. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Bickmore, T.: Relational agents: effecting change through human-computer relationships. PhD Thesis, MIT, Cambridge, MA, USA (2003)Google Scholar
  3. 3.
    Brennan, S.E., Hanna, J.E.: Partner-specific adaptation in dialog. Topics in Cognitive Science 1, 274–291 (2009)CrossRefGoogle Scholar
  4. 4.
    Brown, P., Levinson, S.C.: Politeness: Some universals in language usage. Cambridge University Press, Cambridge (1987)Google Scholar
  5. 5.
    Bunt, H.: The DIT++ taxonomy for functional dialogue markup. In: Heylen, D., Pelachaud, C., Catizone, R., Traum, D. (eds.) Towards a Standard Markup Language for Embodied Dialogue Acts (AAMAS 2009 Workshop), Budapest, Hungary, pp. 13–23 (2009)Google Scholar
  6. 6.
    Cassell, J., Gill, A.J., Tepper, P.A.: Coordination in conversation and rapport. In: Proceedings of the Workshop on Embodied Language Processing (EmbodiedNLP 2007), Prague, Czech Republic, pp. 41–50 (2007)Google Scholar
  7. 7.
    Kopp, S.: Social resonance and embodied coordination in face-to-face conversation with artificial interlocutors. Speech Communication 52, 587–597 (2010)CrossRefGoogle Scholar
  8. 8.
    Kopp, S., Krenn, B., Marsella, S.C., Marshall, A.N., Pelachaud, C., Pirker, H., Thórisson, K.R., Vilhjálmsson, H.H.: Towards a common framework for multimodal generation: The behavior markup language. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 205–217. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Lakin, J.L., Chartrand, T.L.: Using nonconscious behavioral mimicry to create affiliation and rapport. Psychological Science 14, 334–339 (2003)CrossRefGoogle Scholar
  10. 10.
    Pickering, M.J., Garrod, S.: Toward a mechanistic psychology of dialogue. Behavioral and Brain Sciences 27, 169–190 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ramin Yaghoubzadeh
    • 1
  • Stefan Kopp
    • 1
  1. 1.Sociable Agents Group, CITECBielefeld UniversityBielefeldGermany

Personalised recommendations