Nonverbal Action Selection for Explanations Using an Enhanced Behavior Net

  • Javier Snaider
  • Andrew M. Olney
  • Natalie Person
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6895)


In this paper we present a novel approach to the nonverbal action selection problem for an agent in an intelligent tutoring system. We use a variation of the original Maes’ Behavior Net that has several improvements that allow modeling action selection using the content of the utterance, communicative goals, and the discourse history. This Enhanced Behavior Net can perform action selection dynamically, reprioritize actions based on all these elements, and resolve conflict situations without the use of sophisticated predefined rules.


Nonverbal action selection intelligent tutoring system behavior net gestures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Graesser, A.C., McNamara, D.S., VanLehn, K.: Scaffolding deep comprehension strategies through Point&Query, AutoTutor, and iSTART. Educational Psychologist 40(4), 225–234 (2005)CrossRefGoogle Scholar
  2. 2.
    Lester, J.C., Towns, S.G., Fitzgerald, P.J.: Achieving affective impact: Visual emotive communication in lifelike pedagogical agents. International Journal of Artificial Intelligence in Education 10(3-4), 278–291 (1999)Google Scholar
  3. 3.
    Rickel, J., Johnson, W.L.: Animated agents for procedural training in virtual reality: Perception, cognition, and motor control. Applied Artificial Intelligence 13(4), 343–382 (1999)CrossRefGoogle Scholar
  4. 4.
    Atkinson, R.K.: Optimizing learning from examples using animated pedagogical agents. Journal of Educational Psychology 94(2), 416 (2002)CrossRefGoogle Scholar
  5. 5.
    Hershey, K., Mishra, P., Altermatt, E.: All or nothing: Levels of sociability of a pedagogical software agent and its impact on student perceptions and learning. Journal Educational Multimedia and Hypermedia 14(2), 113–127 (2005)Google Scholar
  6. 6.
    Tyrell, T.: Computational Mechanisms for Action Selection. PhD Thesis, University of Edinburg, UK (1993)Google Scholar
  7. 7.
    Olney, A.M., Graesser, A.C., Person, N.K.: Tutorial Dialog in Natural Language. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. Studies in Computational Intelligence, vol. 308, pp. 181–206. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Bergmann, K., Kopp, S.: GNetIc – using bayesian decision networks for iconic gesture generation. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS, vol. 5773, pp. 76–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Lee, J., Marsella, S.C.: Nonverbal behavior generator for embodied conversational agents. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 243–255. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Neff, M., Kipp, M., Albrecht, I., Seidel, H.P.: Gesture modeling and animation based on a probabilistic re-creation of speaker style. ACM Transactions on Graphics (TOG) 27(1), 5 (2008)CrossRefGoogle Scholar
  11. 11.
    Maes, P.: How to do the right thing. Connection Science 1, 291–323 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Williams, B., Williams, C., Volgas, N., Yuan, B., Person, N.: Examining the Role of Gestures in Expert Tutoring. Intelligent Tutoring Systems, 235–244 (2010)Google Scholar
  13. 13.
    Clark, H.H., Brennan, S.E.: Grounding in communication. In: Resnick, L.B., Levine, J.M., Teasley, S.D. (eds.) Perspectives on Socially Shared Cognition, pp. 127–149. American Psychological Association, Washington, DC (1991)CrossRefGoogle Scholar
  14. 14.
    Maes, P.: Modeling Adaptive Autonomous Agents. Artificial Life 1, 135–162 (1993)CrossRefGoogle Scholar
  15. 15.
    Decugis, V., Ferber, J.: Action selection in an autonomous agent with a hierarchical distributed reactive planning architecture. Paper Presented at the Second International Conference on Autonomous Agents, Minneapolis, MN USA (1998)Google Scholar
  16. 16.
    Negatu, A., Franklin, S.: An action selection mechanism for ’conscious’ software agents. Cognitive Science Quarterly 2, 363–386 (2002); special issue on Desires, goals, intentions, and values: Computational architectures. Guest editors Maria Miceli and Cristiano CastelfranchiGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier Snaider
    • 1
  • Andrew M. Olney
    • 2
  • Natalie Person
    • 3
  1. 1.Computer Science Department & Institute for Intelligent SystemsUniversity of MemphisMemphisUSA
  2. 2.Institute for Intelligent SystemsUniversity of MemphisMemphisUSA
  3. 3.Department of PsychologyRhodes CollegeMemphisUSA

Personalised recommendations