Skip to main content

How to Train Your Avatar: A Data Driven Approach to Gesture Generation

  • Conference paper
Intelligent Virtual Agents (IVA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6895))

Included in the following conference series:

Abstract

The ability to gesture is key to realizing virtual characters that can engage in face-to-face interaction with people. Many applications take an approach of predefining possible utterances of a virtual character and building all the gesture animations needed for those utterances. We can save effort on building a virtual human if we can construct a general gesture controller that will generate behavior for novel utterances. Because the dynamics of human gestures are related to the prosody of speech, in this work we propose a model to generate gestures based on prosody. We then assess the naturalness of the animations by comparing them against human gestures. The evaluation results were promising, human judgments show no significant difference between our generated gestures and human gestures and the generated gestures were judged as significantly better than real human gestures from a different utterance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://ict.usc.edu/projects/gunslinger

  2. http://ict.usc.edu/projects/responsive_virtual_human_museum_guides/

  3. http://www.youtube.com/watch?v=OsZ0RI9JH60

  4. Boersma, P.: Praat, a system for doing phonetics by computer. Glot International 5, 341–345 (2001)

    Google Scholar 

  5. Brand, M.: Voice puppetry. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 21–28. ACM Press, New York (1999)

    Chapter  Google Scholar 

  6. Busso, C., Deng, Z., Grimm, M., Neumann, U., Narayanan, S.: Rigid head motion in expressive speech animation: Analysis and synthesis. IEEE Transactions on Audio, Speech, and Language Processing 15(3), 1075–1086 (2007)

    Article  Google Scholar 

  7. Cassell, J., Vilhjálmsson, H.H., Bickmore, T.: Beat: the behavior expression animation toolkit. In: SIGGRAPH 2001: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 477–486. ACM, New York (2001)

    Chapter  Google Scholar 

  8. Chiu, C.C., Marsella, S.: A style controller for generating virtual human behaviors. In: Proceedings of the 10th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, vol. 1 (2011)

    Google Scholar 

  9. Ennis, C., McDonnell, R., O’Sullivan, C.: Seeing is believing: body motion dominates in multisensory conversations. In: ACM SIGGRAPH 2010 papers, SIGGRAPH 2010, pp. 91:1–91:9. ACM, New York (2010)

    Google Scholar 

  10. Hinton, G.: A practical guide to training restricted boltzmann machines. UTML TR 2010003, Department of Computer Science, University of Toronto (August 2010)

    Google Scholar 

  11. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  13. Krauss, R.M., Chen, Y., Gottesman, R.F.: Lexical gestures and lexical access: a process model. In: McNeill, D. (ed.) Language and Gesture. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  14. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area v2. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 873–880. MIT Press, Cambridge (2008)

    Google Scholar 

  15. Lee, J., Marsella, S.C.: Nonverbal behavior generator for embodied conversational agents. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 243–255. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Levine, S., Krähenbühl, P., Thrun, S., Koltun, V.: Gesture controllers. In: ACM SIGGRAPH 2010 papers, SIGGRAPH 2010, pp. 124:1–124:11. ACM, New York (2010)

    Google Scholar 

  17. Levine, S., Theobalt, C., Koltun, V.: Real-time prosody-driven synthesis of body language. ACM Trans. Graph 28, 172:1–172:10 (2009), http://doi.acm.org/10.1145/1618452.1618518

    Google Scholar 

  18. Neff, M., Kipp, M., Albrecht, I., Seidel, H.-P.: Gesture modeling and animation based on a probabilistic re-creation of speaker style. ACM Trans. Graph 27(1), 1–24 (2008)

    Article  Google Scholar 

  19. Sargin, M.E., Yemez, Y., Erzin, E., Tekalp, A.M.: Analysis of head gesture and prosody patterns for prosody-driven head-gesture animation. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(8), 1330–1345 (2008)

    Article  Google Scholar 

  20. Stone, M., DeCarlo, D., Oh, I., Rodriguez, C., Stere, A., Lees, A., Bregler, C.: Speaking with hands: creating animated conversational characters from recordings of human performance. In: SIGGRAPH 2004: ACM SIGGRAPH 2004 Papers, pp. 506–513. ACM, New York (2004)

    Chapter  Google Scholar 

  21. Taylor, G., Hinton, G.: Factored conditional restricted Boltzmann machines for modeling motion style. In: Bottou, L., Littman, M. (eds.) Proceedings of the 26th International Conference on Machine Learning, pp. 1025–1032. Omnipress, Montreal (2009)

    Google Scholar 

  22. Taylor, G.W., Hinton, G.E., Roweis, S.T.: Modeling human motion using binary latent variables. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 1345–1352. MIT Press, Cambridge (2007)

    Google Scholar 

  23. Valbonesi, L., Ansari, R., McNeill, D., Quek, F., Duncan, S., McCullough, K.E., Bryll, R.: Multimodal signal analysis of prosody and hand motion: Temporal correlation of speech and gestures. In: Proc. of the European Signal Processing Conference, EUSIPCO 2002, pp. 75–78 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiu, CC., Marsella, S. (2011). How to Train Your Avatar: A Data Driven Approach to Gesture Generation. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R. (eds) Intelligent Virtual Agents. IVA 2011. Lecture Notes in Computer Science(), vol 6895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23974-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23974-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23973-1

  • Online ISBN: 978-3-642-23974-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics