Advertisement

Run Time Adaptation of Video-Surveillance Systems: A Software Modeling Approach

  • Sabine Moisan
  • Jean-Paul Rigault
  • Mathieu Acher
  • Philippe Collet
  • Philippe Lahire
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6962)

Abstract

Video-surveillance processing chains are complex software systems, exhibiting high degrees of variability along several dimensions. At the specification level, the number of possible applications and type of scenarios is large. On the software architecture side, the number of components, their variations due to possible choices among different algorithms, the number of tunable parameters... make the processing chain configuration rather challenging. In this paper we describe a framework for design, deployment, and run-time adaptation of video-surveillance systems—with a focus on the run time aspect. Starting from a high level specification of the application type, execution context, quality of service requirements... the framework derives valid possible system configurations through (semi) automatic model transformations. At run-time, the framework is also responsible for adapting the running configuration to context changes. The proposed framework relies on Model-Driven Engineering (MDE) methods, a recent line of research in Software Engineering that promotes the use of software models and model transformations to establish a seamless path from software specifications to system implementations. It uses Feature Diagrams which offer a convenient way of representing the variability of a software system. The paper illustrates the approach on a simple but realistic use case scenario of run time adaptation.

Keywords

Software Product Line Propositional Formula Internal Constraint Cross Model Feature Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Acher, M., Collet, P., Lahire, R., France, R.: A Domain-Specific Language for Managing Feature Models. In: Symposium on Applied Computing (SAC 2011), Programming Languages Track. ACM, Taiwan (2011)Google Scholar
  4. 4.
    Blum, S.A.: From a CORBA-based software framework to a component-based system architecture for controlling a mobile robot. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 333–344. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly, Sebastopol (2008)Google Scholar
  6. 6.
    François, A.R.J., Medioni, G.G.: A modular software architecture for real-time video processing. In: Schiele, B., Sagerer, G. (eds.) ICVS 2001. LNCS, vol. 2095, pp. 35–49. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Georis, B.: Program Supervision Techniques for Easy Configuration of Video Understanding Systems. Ph.D. thesis, Université de Nice-Sophia Antipolis, France (January 2006)Google Scholar
  8. 8.
    Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines. Computer 41, 93–95 (2008)CrossRefGoogle Scholar
  9. 9.
    Hammes, J., Draper, B., Böhm, W.: Sassy: A language and optimizing compiler for image processing on reconfigurable computing systems. In: Christensen, H.I. (ed.) ICVS 1999. LNCS, vol. 1542, pp. 83–97. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture–Practice and Promise. Addison-Wesley Professional, Reading (2003)Google Scholar
  11. 11.
    Lux, A.: The imalab method for vision systems. Machine Vision and Applications (2004)Google Scholar
  12. 12.
    McAffer, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating Highly Modular Java Systems. Addison-Wesley, Reading (2010)Google Scholar
  13. 13.
    Moisan, S.: Knowledge representation for program reuse. In: European Conference on Artificial Intellignece (ECAI), Lyon, France (2002)Google Scholar
  14. 14.
    Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@ run.time to support dynamic adaptation. Computer 42, 44–51 (2009)CrossRefGoogle Scholar
  15. 15.
    Le Pors, E., Grisvard, O.: Conceptual modeling for system requirements enhancement. In: Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol. 5570, pp. 251–265. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Renouf, A., Clouard, R., Revenu, M.: How to formulate image processing applications? In: International Conference on Computer Vision Systems (ICVS), Bielefeld, Germany, pp. 1–10 (March 2007)Google Scholar
  17. 17.
    SanMiguel, J.C., Bescos, J., Martinez, J.M., Garcia, A.: Diva: a distributed video analysis framework applied to video-surveillance systems. In: 9th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Klagenfurt, Austria, pp. 207–211 (May 2008)Google Scholar
  18. 18.
    Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Generic semantics of feature diagrams. Computer Networks 51(2), 456–479 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sabine Moisan
    • 3
  • Jean-Paul Rigault
    • 1
    • 2
    • 3
  • Mathieu Acher
    • 1
    • 2
  • Philippe Collet
    • 1
    • 2
  • Philippe Lahire
    • 1
    • 2
  1. 1.I3S CNRSFrance
  2. 2.University of NiceFrance
  3. 3.INRIA Sophia Antipolis MéditerranéeFrance

Personalised recommendations