Advertisement

A Cognitive Vision System for Nuclear Fusion Device Monitoring

  • Vincent Martin
  • Victor Moncada
  • Jean-Marcel Travere
  • Thierry Loarer
  • François Brémond
  • Guillaume Charpiat
  • Monique Thonnat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6962)

Abstract

We propose a cognitive vision-based system for the intelligent monitoring of tokamaks during plasma operation, based on multi-sensor data analysis and symbolic reasoning. The practical purpose is to detect and characterize in real time abnormal events such as hot spots measured through infrared images of the in-vessel components in order to take adequate decisions. Our system is made intelligent by the use of a priori knowledge of both contextual and perceptual information for ontology-driven event modeling and task-oriented event recognition. The system is made original by combining both physics-based and perceptual information during the recognition process. Real time reasoning is achieved thanks to task-level software optimizations. The framework is generic and can be easily adapted to different fusion device environments. This paper presents the developed system and its achievements on real data of the Tore Supra tokamak imaging system.

Keywords

cognitive vision system infrared monitoring ontology multi-sensor event fusion thermal event recognition real-time vision iter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumeunier, M.H., Travere, J.M., Loarer, T., Benoit, F.: Simulation vs. reality: a step towards a better understanding of infrared images in fusion devices. IEEE Transactions on Plasma Science (to appear, August 2011)Google Scholar
  2. 2.
    Butler, D., Bove Jr., V.M., Sridharan, S.: Real-time adaptive foreground/background segmentation. EURASIP J. Appl. Signal Process. 2005, 2292–2304 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Eggert, J., Wersing, H.: Approaches and Challenges for Cognitive Vision Systems. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS, vol. 5436, pp. 215–247. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Gomez-Romero, J., Patricio, M., Garcia, J., Molina, J.: Ontological representation of context knowledge for visual data fusion. In: Int. Conf. on Information Fusion, pp. 2136–2143 (2009)Google Scholar
  5. 5.
    Maillot, N., Thonnat, M., Boucher, A.: Towards ontology-based cognitive vision. Machine Vision and Applications 16, 33–40 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Martin, V., Dunand, G., Moncada, V., Jouve, M., Travere, J.M.: New fpga-based image-oriented acquisition and real-time processing applied to plasma facing component thermal monitoring. Rev. of Sci. Instr. 81(10), 10E113 –10E113–4 (2010)Google Scholar
  7. 7.
    Martin, V., Travere, J., Brémond, F., Moncada, V., Dunand, G.: Thermal event recognition applied to protection of tokamak plasma-facing components. IEEE Trans. on Instr. and Meas. 59(5), 1182–1191 (2010)CrossRefGoogle Scholar
  8. 8.
    Moreau, P., Barana, O., Brémond, S., Colas, L., Ekedahl, A., Saint-Laurent, F., Balorin, C., Caulier, G., Desgranges, C., Guilhem, D., Jouve, M., Kazarian, F., Lombard, G., Millon, L., Mitteau, R., Mollard, P., Roche, H., Travere, J.M.: RF heating optimization on Tore Supra using feedback control of infrared measurements. Fusion Engineering and Design 82(5-14), 1030–1035 (2007)CrossRefGoogle Scholar
  9. 9.
    Murari, A., Camplani, M., Cannas, B., Mazon, D., Delaunay, F., Usai, P., Delmond, J.: Algorithms for the automatic identification of marfes and ufos in jet database of visible camera videos. IEEE Trans. on Plasma Science 38(12), 3409–3418 (2010)CrossRefGoogle Scholar
  10. 10.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–168 (2004)CrossRefGoogle Scholar
  11. 11.
    Shafait, F., Keysers, D., Breuel, T.M.: Efficient implementation of local adaptive thresholding techniques using integral images. In: SPIE Conference Series, vol. 6815 (January 2008)Google Scholar
  12. 12.
    Zouba, N., Brémond, F., Thonnat, M.: Multisensor fusion for monitoring elderly activities at home. In: Proceedings of AVSS 2009, pp. 98–103. IEEE Computer Society, Washington, DC, USA (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vincent Martin
    • 1
  • Victor Moncada
    • 1
  • Jean-Marcel Travere
    • 1
  • Thierry Loarer
    • 1
  • François Brémond
    • 2
  • Guillaume Charpiat
    • 2
  • Monique Thonnat
    • 2
  1. 1.CEA, IRFMSaint Paul Lez DuranceFrance
  2. 2.INRIA, PULSAR research teamSophia AntipolisFrance

Personalised recommendations