Skip to main content

Maximal Ideal Recursive Semantics for Defeasible Argumentation

  • Conference paper
Scalable Uncertainty Management (SUM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6929))

Included in the following conference series:

Abstract

In a previous work we defined a recursive warrant semantics for Defeasible Logic Programming extended with levels of possibilistic uncertainty for defeasible rules. The resulting argumentation framework, called RP-DeLP, is based on a general notion of collective (non-binary) conflict among arguments allowing to ensure direct and indirect consistency properties with respect to the strict knowledge. An output of an RP-DeLP program is a pair of sets of warranted and blocked conclusions (literals), all of them recursively based on warranted conclusions but, while warranted conclusions do not generate any conflict, blocked conclusions do. An RP-DeLP program may have multiple outputs in case of circular definitions of conflicts among arguments. In this paper we tackle the problem of which output one should consider for an RP-DeLP program with multiple outputs. To this end we define the maximal ideal output of an RP-DeLP program as the set of conclusions which are ultimately warranted and we present an algorithm for computing them in polynomial space and with an upper bound on complexity equal to P NP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsinet, T., Béjar, R., Godo, L.: A characterization of collective conflict for defeasible argumentation. In: COMMA, pp. 27–38 (2010)

    Google Scholar 

  2. Alsinet, T., Béjar, R., Godo, L.: A computational method for defeasible argumentation based on a recursive warrant semantics. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS, vol. 6433, pp. 40–49. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5-6), 286–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cecchi, L., Fillottrani, P., Simari, G.: On the complexity of delp through game semantics. In: NMR, pp. 386–394 (2006)

    Google Scholar 

  6. Chesñevar, C., Maguitman, A., Loui, R.: Logical Models of Argument. ACM Computing Surveys 32(4), 337–383 (2000)

    Article  Google Scholar 

  7. Chesñevar, C., Simari, G., Godo, L.: Computing dialectical trees efficiently in possibilistic defeasible logic programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 158–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based argumentation. In: COMMA, pp. 145–156 (2006)

    Google Scholar 

  10. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell. 171(10-15), 642–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Een, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. García, A., Simari, G.: Defeasible Logic Programming: An Argumentative Approach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kautz, H.A., Selman, B.: Unifying sat-based and graph-based planning. In: IJCAI, pp. 318–325 (1999)

    Google Scholar 

  14. Pollock, J.L.: A recursive semantics for defeasible reasoning. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence. ch.9, pp. 173–198. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Prakken, H., Vreeswijk, G.: Logical Systems for Defeasible Argumentation. In: Gabbay, D., Guenther, F. (eds.) Handbook of Phil. Logic, pp. 219–318. Kluwer, Dordrecht (2002)

    Google Scholar 

  16. Vreeswijk, G.: Abstract argumentation systems. Artif. Intell. 90(1-2), 225–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alsinet, T., Béjar, R., Godo, L., Guitart, F. (2011). Maximal Ideal Recursive Semantics for Defeasible Argumentation. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23963-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23962-5

  • Online ISBN: 978-3-642-23963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics