Advertisement

Dynamics of Beliefs

  • Sébastien Konieczny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6929)

Abstract

The dynamics of beliefs is one of the major components of any autonomous system, that should be able to incorporate new pieces of information. In this paper we give a quick overview of the main operators for belief change, in particular revision, update, and merging, when the beliefs are represented in propositional logic. And we discuss some works on belief change in more expressive frameworks.

Keywords

Belief Revision Integrity Constraint Belief Base Horn Clause Belief Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C., Makinson, D.: On the logic of theory change: Safe contraction. Studia Logica 44, 405–422 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ayoun, A., Smets, P.: Data association in multi-target detection using the transferable belief model. International Journal of Intelligent Systems 16(10), 1167–1182 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baral, C., Kraus, S., Minker, J.: Combining multiple knowledge bases. IEEE Transactions on Knowledge and Data Engineering 3(2), 208–220 (1991)CrossRefGoogle Scholar
  5. 5.
    Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases consisting of first-order theories. Computational Intelligence 8(1), 45–71 (1992)CrossRefGoogle Scholar
  6. 6.
    Benferhat, S., Dubois, D., Lang, J., Prade, H., Saffioti, A., Smets, P.: A general approach for inconsistency handling and merging information in prioritized knowledge bases. In: Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 466–477 (1998)Google Scholar
  7. 7.
    Benferhat, S., Dubois, D., Prade, H.: A computational model for belief change and fusing ordered belief bases. In: Rott, H., Williams, M.A. (eds.) Frontiers in Belief revision. Kluwer, Dordrecht (1999)Google Scholar
  8. 8.
    Benferhat, S., Kaci, S.: Fusion of possibilistic knowledge bases from a postulate point of view. International Journal of Approximate Reasoning 33(3), 255–285 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Benferhat, S., Lagrue, S., Papini, O.: Revision of partially ordered information: Axiomatization, semantics and iteration. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 376–381 (2005)Google Scholar
  10. 10.
    Bloch, I., Géraud, T., Maître, H.: Representation and fusion of heterogeneous fuzzy information in the 3d space for model-based structural recognition–application to 3d brain imaging. Artificial Intelligence 148(1-2), 141–175 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bloch, I., Hunter, A., Appriou, A., Ayoun, A., Benferhat, S., Besnard, P., Cholvy, L., Cooke, R.M., Cuppens, F., Dubois, D., Fargier, H., Grabisch, M., Kruse, R., Lang, J., Moral, S., Prade, H., Saffiotti, A., Smets, P., Sossai, C.: Fusion: General concepts and characteristics. International Journal of Intelligent Systems 16(10), 1107–1134 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bloch, I., Lang, J.: Towards mathematical morpho-logics. In: Proceedings of the Eigth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2000), pp. 1405–1412 (2000)Google Scholar
  13. 13.
    Boella, G., da Pereira, C., Tettamanzi, A., van der Torre, L.: Making others believe what they want. In: Artificial Intelligence in Theory and Practice II, pp. 215–224 (2008)Google Scholar
  14. 14.
    Booth, R.: A negotiation-style framework for non-prioritised revision. In: Proceedings of the Eighth Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2001), pp. 137–150 (2001)Google Scholar
  15. 15.
    Booth, R.: Social contraction and belief negotiation. In: Proceedings of the Eighth Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 374–384 (2002)Google Scholar
  16. 16.
    Booth, R.: Social contraction and belief negotiation. Information Fusion 7(1), 19–34 (2006)CrossRefGoogle Scholar
  17. 17.
    Booth, R., Meyer, T.: Admissible and restrained revision. Journal of Artificial Intelligence Research 26, 127–151 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Booth, R., Meyer, T., Varzinczak, I.J.: Next steps in propositional horn contraction. In: Proceedings of the Twenty first International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 702–707 (2009)Google Scholar
  19. 19.
    Booth, R., Meyer, T., Varzinczak, I.J., Wassermann, R.: Horn belief change: A contraction core. In: Proceedings of the Nineteenth European Conference on Artificial Intelligence (ECAI 2010), pp. 1065–1066 (2010)Google Scholar
  20. 20.
    Booth, R., Nittka, A.: Reconstructing an agent’s epistemic state from observations. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 394–399 (2005)Google Scholar
  21. 21.
    Condotta, J.F., Kaci, S., Marquis, P., Schwind, N.: Merging qualitative constraint networks in a piecewise fashion. In: Proceedings of the Twenty First International Conference on Tools with Artificial Intelligence (ICTAI 2009), pp. 605–608 (2009)Google Scholar
  22. 22.
    Condotta, J.F., Kaci, S., Marquis, P., Schwind, N.: Merging qualitative constraints networks using propositional logic. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 347–358. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Condotta, J.F., Kaci, S., Marquis, P., Schwind, N.: Majority merging: from boolean spaces to affine spaces. In: Proceedings of the Nineteenth European Conference on Artificial Intelligence (ECAI 2010), pp. 627–632 (2010)Google Scholar
  24. 24.
    Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M.C., Marquis, P.: On the merging of dung’s argumentation systems. Artificial Intelligence 171, 740–753 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Dalal, M.: Investigations into a theory of knowledge base revision: preliminary report. In: Proceedings of the American National Conference on Artificial Intelligence (AAAI 1988), pp. 475–479 (1988)Google Scholar
  26. 26.
    Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence (89), 1–29 (1997)Google Scholar
  27. 27.
    Delgrande, J.P.: Horn clause belief change: Contraction functions. In: Proceedings of the Eleventh International Conference on the Principles of Knowledge Representation and Reasoning (KR 2008), pp. 156–165 (2008)Google Scholar
  28. 28.
    Delgrande, J.P., Dubois, D., Lang, J.: Iterated revision as prioritized merging. In: Proceedings of the Tenth International Conference on Knowledge Representation and Reasoning (KR 2006), pp. 210–220 (2006)Google Scholar
  29. 29.
    Delgrande, J.P., Wassermann, R.: Horn clause contraction functions: Belief set and belief base approaches. In: Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning, KR 2010 (2010)Google Scholar
  30. 30.
    Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Dupin de Saint-Cyr, F., Lang, J.: Belief extrapolation (or how to reason about observations and unpredicted change). In: Proceedings of the Eighth Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 497–508 (2002)Google Scholar
  32. 32.
    Dupin de Saint-Cyr, F., Lang, J.: Belief extrapolation (or how to reason about observations and unpredicted change). Artificial Intelligence 175(2), 760–790 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Belief revision and argumentation theory. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 341–360. Springer, US (2009)CrossRefGoogle Scholar
  34. 34.
    Fermé, E., Hansson, S.O. (eds.): Journal of Philosophical Logic. Special Issue on 25 Years of AGM Theory, vol. 40(2). Springer, Netherlands (2011)Google Scholar
  35. 35.
    Gärdenfors, P.: Knowledge in flux. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  36. 36.
    Gärdenfors, P. (ed.): Belief Revision. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  37. 37.
    Gärdenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic entrenchment. In: Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge, pp. 83–95 (1988)Google Scholar
  38. 38.
    Gauwin, O., Konieczny, S., Marquis, P.: Conciliation and consensus in iterated belief merging. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 514–526. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  39. 39.
    Gorogiannis, N., Hunter, A.: Merging first-order knowledge using dilation operators. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 132–150. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  40. 40.
    Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17(157-180) (1988)Google Scholar
  41. 41.
    Hansson, S.O.: A Textbook of Belief Dynamics. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  42. 42.
    Hansson, S.O. (ed.): Theoria. Special Issue on non-prioritized belief revision, vol. 63(1-2). Wiley, Chichester (1997)Google Scholar
  43. 43.
    Herzig, A., Rifi, O.: Propositional belief base update and minimal change. Artificial Intelligence 115(1), 107–138 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Hunter, A., Delgrande, J.P.: Belief change in the context of fallible actions and observations. In: Proceedings of the Twenty First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, AAAI 2006 (2006)Google Scholar
  45. 45.
    Jin, Y., Thielscher, M.: Iterated belief revision, revised. Artificial Intelligence 171, 1–18 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kaci, S., Benferhat, S., Dubois, D., Prade, H.: A principled analysis of merging operations in possibilistic logic. In: Proceedings of the Sixteenth Conference in Uncertainty in Artificial Intelligence (UAI 2000), pp. 24–31 (2000)Google Scholar
  47. 47.
    Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and revising it. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 387–394 (1991)Google Scholar
  48. 48.
    Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52, 263–294 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and revising it. In: Gärdenfors, P. (ed.) Belief Revision. Cambridge University Press, Cambridge (1992)Google Scholar
  50. 50.
    Konieczny, S.: Belief base merging as a game. Journal of Applied Non-Classical Logics 14(3), 275–294 (2004)CrossRefzbMATHGoogle Scholar
  51. 51.
    Konieczny, S., Medina Grespan, M., Pino Pérez, R.: Taxonomy of improvement operators and the problem of minimal change. In: Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning, KR 2010 (2010)Google Scholar
  52. 52.
    Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelligence 157(1-2), 49–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical framework. Journal of Logic and Computation 12(5), 773–808 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Konieczny, S., Pino Pérez, R.: Confluence operators. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 272–284. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  55. 55.
    Konieczny, S., Pino Pérez, R.: Improvement operators. In: Proceedings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 177–186 (2008)Google Scholar
  56. 56.
    Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE Transactions on Knowledge and Data Engineering 10(1), 76–90 (1998)CrossRefGoogle Scholar
  57. 57.
    Liberatore, P., Schaerf, M.: BReLS: A system for the integration of knowledge bases. In: Proceedings of the Seventh Conference on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 145–152 (2000)Google Scholar
  58. 58.
    Lin, J., Mendelzon, A.O.: Merging databases under constraints. International Journal of Cooperative Information System 7(1), 55–76 (1998)CrossRefGoogle Scholar
  59. 59.
    Meyer, T., Foo, N., Zhang, D., Kwok, R.: Logical foundations of negotiation: Strategies and preferences. In: Proceedings of the Ninth Conference on Principles of Knowledge Representation and Reasoning (KR 2004), pp. 311–318 (2004)Google Scholar
  60. 60.
    Meyer, T.A.: On the semantics of combination operations. Journal of Applied Non-Classical Logics 11(1-2), 59–84 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Revesz, P.Z.: Model-theoretic minimal chenge operators for constraint databases. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 447–460. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  62. 62.
    Revesz, P.Z.: On the semantics of arbitration. International Journal of Algebra and Computation 7(2), 133–160 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Rotstein, N.D., Moguillansky, M.O., Falappa, M.A., García, A.J., Simari, G.R.: Argument theory change: Revision upon warrant. In: Proceeding of the 2008 Conference on Computational Models of Argument (COMMA 2008), pp. 336–347 (2008)Google Scholar
  64. 64.
    Rott, H.: Change, choice and inference: a study of belief revision and nonmonotonic reasoning. Oxford logic guides. Clarendon, Oxford (2001)zbMATHGoogle Scholar
  65. 65.
    Smets, P.: The combination of evidence in the transferable belief model. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 447–458 (1990)CrossRefGoogle Scholar
  66. 66.
    Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, vol. 2, pp. 105–134 (1987)Google Scholar
  67. 67.
    Williams, M.A.: Transmutations of knowledge systems. In: Proceedings of the Fourth International Conference on the Principles of Knowledge Representation and Reasoning (KR 1994), pp. 619–629 (1994)Google Scholar
  68. 68.
    Zhang, D., Foo, N., Meyer, T., Kwok, R.: Negotiation as mutual belief revision. In: Proceedings of the American National Conference on Artificial Intelligence (AAAI 2004), pp. 317–322 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sébastien Konieczny
    • 1
  1. 1.CRIL - CNRS Université d’ArtoisLensFrance

Personalised recommendations