Advertisement

Answering Threshold Queries in Probabilistic Datalog+/– Ontologies

  • Georg Gottlob
  • Thomas Lukasiewicz
  • Gerardo I. Simari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6929)

Abstract

The recently introduced Datalog+/– family of ontology languages is especially useful for representing and reasoning over lightweight ontologies, and is set to play a central role in the context of query answering and information extraction for the Semantic Web. Recently, it has become apparent that it is necessary to develop a principled way to handle uncertainty in this domain. In addition to uncertainty as an inherent aspect of the Web, one must also deal with forms of uncertainty due to inconsistency and incompleteness, uncertainty resulting from automatically processing Web data, as well as uncertainty stemming from the integration of multiple heterogeneous data sources. In this paper, we take an important step in this direction by developing the first probabilistic extension of Datalog+/–. This extension uses Markov logic networks as underlying probabilistic semantics. Here, we especially focus on scalable algorithms for answering threshold queries, which correspond to the question “what is the set of all atoms that are inferred from a given probabilistic ontology with a probability of at least p?”. These queries are especially relevant to Web information extraction, since uncertain rules lead to uncertain facts, and only information with a certain minimum confidence is desired. We present two algorithms: a basic approach and one based on heuristics that is guaranteed to return sound results.

Keywords

Description Logic Conjunctive Query Ground Atom Ontology Language Probabilistic Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Amer. 284, 34–43 (2002)CrossRefGoogle Scholar
  4. 4.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: Proc. KR 2008, pp. 70–80. AAAI Press, Menlo Park (2008)Google Scholar
  5. 5.
    Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of logical knowledge representation and query languages for new applications. In: Proc. LICS 2010, pp. 228–242. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  6. 6.
    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1, 146–166 (1989)CrossRefGoogle Scholar
  7. 7.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. STOC 1977, pp. 77–90. ACM Press, New York (1977)Google Scholar
  8. 8.
    Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proc. PODS 2008, pp. 149–158. ACM Press, New York (2008)Google Scholar
  9. 9.
    Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in probabilistic databases. In: Proc. ICDE 2011. IEEE Computer Society, Los Alamitos (2011)Google Scholar
  12. 12.
    Heinsohn, J.: Probabilistic description logics. In: Proc. UAI 1994, pp. 311–318. Morgan Kaufmann, San Francisco (1994)Google Scholar
  13. 13.
    Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: A probabilistic database management system. In: Proc. SIGMOD 2009, pp. 1071–1074. ACM Press, New York (2009)Google Scholar
  14. 14.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Koch, C., Olteanu, D., Re, C., Suciu, D.: Probabilistic Databases. Morgan-Claypool, San Francisco (2011)zbMATHGoogle Scholar
  16. 16.
    Koller, D., Levy, A., Pfeffer, A.: P-Classic: A tractable probabilistic description logic. In: Proc. AAAI 1997, pp. 390–397. AAAI Press/The MIT Press (1997)Google Scholar
  17. 17.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172, 852–883 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the Semantic Web. J. Web Sem. 6, 291–308 (2008)CrossRefGoogle Scholar
  19. 19.
    Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)CrossRefGoogle Scholar
  20. 20.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language. W3C Recommendation (February 10 2004), http://www.w3.org/TR/owl-semantics/
  21. 21.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)zbMATHGoogle Scholar
  22. 22.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)CrossRefGoogle Scholar
  23. 23.
    Yang, Y., Calmet, J.: OntoBayes: An ontology-driven uncertainty model. In: Proc. CIMCA/IAWTIC 2005, pp. 457–463. IEEE Computer Society, Los Alamitos (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Georg Gottlob
    • 1
  • Thomas Lukasiewicz
    • 1
  • Gerardo I. Simari
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations