Global Optimization of Analogy-Based Software Cost Estimation with Genetic Algorithms

  • Dimitrios Milios
  • Ioannis Stamelos
  • Christos Chatzibagias
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 364)

Abstract

Estimation by Analogy is a popular method in the field of software cost estimation. A number of research approaches focus on optimizing the parameters of the method. This paper proposes an optimal global setup for determining empirically the best method parameter configuration based on genetic algorithms. We describe how such search can be performed, and in particular how spaces whose dimensions are of different type can be explored. We report results on two datasets and compare with approaches that explore partially the search space. Results provide evidence that our method produces similar or better accuracy figures with respect to other approaches.

Keywords

Genetic Algorithm Global Optimization Project Attribute Attribute Weight Binary Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albrecht, A.: Software function, source lines of code, and development effort prediction: a software science validation. IEEE Trans. Softw. Eng. 9(6), 639–648 (1983)CrossRefGoogle Scholar
  2. 2.
    Angelis, L., Stamelos, I.: A simulation tool for efficient analogy based cost estimation. Empirical Softw. Engg. 5(1), 35–68 (2000)CrossRefGoogle Scholar
  3. 3.
    Bibi, S., Stamelos, I., Angelis, L.: Combining probabilistic models for explanatory productivity estimation. Inf. Softw. Technol. 50(7-8), 656–669 (2008)CrossRefGoogle Scholar
  4. 4.
    Boehm, B.: Software engineering economics, vol. 1. Prentice-Hall, Englewood Cliffs (1981)MATHGoogle Scholar
  5. 5.
    Chiu, N., Huang, S.: The adjusted analogy-based software effort estimation based on similarity distances. J. Syst. Softw. 80(4), 628–640 (2007)CrossRefGoogle Scholar
  6. 6.
    Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models. Benjamin-Cummings Publishing Co., Inc. (1986)Google Scholar
  7. 7.
    Desharnais, J.M.: Analyse statistique de la productivitie des projets informatique a partie de la technique des point des fonction (1989)Google Scholar
  8. 8.
    Efron, B., Gong, G.: A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician 37(1), 36–48 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Finnie, G.R., Wittig, G.E., Desharnais, J.M.: A comparison of software effort estimation techniques: using function points with neural networks, case-based reasoning and regression models. J. Syst. Softw. 39(3), 281–289 (1997)CrossRefGoogle Scholar
  10. 10.
    Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  11. 11.
    Holland, J.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  12. 12.
    Huang, S., Chiu, N.: Optimization of analogy weights by genetic algorithm for software effort estimation. Inf. Softw. Technol. 48(11), 1034–1045 (2006)CrossRefGoogle Scholar
  13. 13.
    International Software Benchmark and Standards Group. ISBSG Data Release 10Google Scholar
  14. 14.
    Kemerer, C.: An empirical validation of software cost estimation models. Communications of the ACM 30(5), 416–429 (1987)CrossRefGoogle Scholar
  15. 15.
    Keung, J., Kitchenham, B.: Analogy-X: Providing statistical inference to analogy-based software cost estimation. IEEE Trans. Softw. Eng. 34(4), 471–484 (2008)CrossRefGoogle Scholar
  16. 16.
    Kitchenham, B., Mendes, E., Travassos, G.: Cross versus within-company cost estimation studies: a systematic review. IEEE Trans. Softw. Eng. 33(5), 316–329 (2007)CrossRefGoogle Scholar
  17. 17.
    Li, J., Ruhe, G.: Analysis of attribute weighting heuristics for analogy-based software effort estimation method AQUA+. Empirical Softw. Engg. 13(1), 63–96 (2008)CrossRefGoogle Scholar
  18. 18.
    Li, J., Ruhe, G., Al-Emran, A., Richter, M.: A flexible method for software effort estimation by analogy. Empirical Softw. Engg. 12(1), 65–106 (2007)CrossRefGoogle Scholar
  19. 19.
    Oliveira, A., Braga, P., Lima, R., Cornélio, M.: GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation. Inf. Softw. Technol. 52(11), 1155–1166 (2010)CrossRefGoogle Scholar
  20. 20.
    Schweizer, W.: Numerical quantum dynamics. Kluwer Academic Publishers, Dordrecht (2001)MATHGoogle Scholar
  21. 21.
    Shepperd, M., Schofield, C.: Estimating software project effort using analogies. IEEE Trans. Softw. Eng. 23(11), 736–743 (1997)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Dimitrios Milios
    • 1
  • Ioannis Stamelos
    • 2
  • Christos Chatzibagias
    • 2
  1. 1.School of InformaticsUniversity Of EdinburghEdinburghUK
  2. 2.Department Of InformaticsAristotle University Of ThessalonikiThessalonikiGreece

Personalised recommendations