A Framework for Web Page Rank Prediction

  • Elli Voudigari
  • John Pavlopoulos
  • Michalis Vazirgiannis
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 364)

Abstract

We propose a framework for predicting the ranking position of a Web page based on previous rankings. Assuming a set of successive top-k rankings, we learn predictors based on different methodologies.

The prediction quality is quantified as the similarity between the predicted and the actual rankings. Extensive experiments were performed on real world large scale datasets for global and query-based top-k rankings, using a variety of existing similarity measures for comparing top-k ranked lists, including a novel and more strict measure introduced in this paper. The predictions are highly accurate and robust for all experimental setups and similarity measures.

Keywords

Rank Prediction Data Mining Web Mining Artificial Intelligence 

References

  1. 1.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Prinston (1963)Google Scholar
  2. 2.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Royal Statistical Society 39, 1–38 (1977)MathSciNetMATHGoogle Scholar
  3. 3.
    Kendall, M.G., Gibbons, J.D.: Rank Correlation Methods. Charles Griffin, UK (1990)MATHGoogle Scholar
  4. 4.
    Haveliwala, T.H.: Topic-Sensitive PageRank. In: Proc. WWW (2002)Google Scholar
  5. 5.
    Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques. TOIS 20, 422–446 (2002)CrossRefGoogle Scholar
  6. 6.
    Chien, S., Dwork, C., Kumar, R., Simon, D.R., Sivakumar, D.: Link Evolution:Analysis and Algorithms. Internet Mathematics 1, 277–304 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, Y.-Y., Gan, Q., Suel, T.: Local Methods for Estimating PageRank Values. In: Proc. of CIKM (2004)Google Scholar
  8. 8.
    Langville, A.N., Meyer, C.D.: Updating PageRank with iterative aggregation. In: Proc. of the 13th International World Wide Web Conference on Alternate Track Papers and Posters, pp. 392–393 (2004)Google Scholar
  9. 9.
    Kan, M.-Y., Thi, H.O.: Fast webpage classification using URL features. In: Conference on Information and Knowledge Management, pp. 325–326. ACM, New York (2005)Google Scholar
  10. 10.
    Yang, H., King, I., Lu, M.R.: Predictive Ranking:A Novel Page Ranking Approach by Estimating the Web Structure. In: Proc. of the 14th International WWW Conference, pp. 1825–1832 (2005)Google Scholar
  11. 11.
    Broder, A.Z., Lempel, R., Maghoul, F., Pedersen, J.: Efficient PageRank approximation via graph aggregation. Inf. Retrieval 9, 123–138 (2006)CrossRefGoogle Scholar
  12. 12.
    Vlachou, A., Berberich, K., Vazirgiannis, M.: Representing and quantifying rank-change for the Web graph. In: Aiello, W., Broder, A., Janssen, J., Milios, E.E. (eds.) WAW 2006. LNCS, vol. 4936, pp. 157–165. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Vazirgiannis, M., Drosos, D., Senellart, P., Vlachou, A.: Web Page Rank Prediction with Markov Models. WWW poster (2008)Google Scholar
  14. 14.
    Sayyadi, H., Getoor, L.: Future Rank: Ranking Scientific Articles by Predicting their Future PageRank. In: SIAM Intern. Confer. on Data Mining, pp. 533–544 (2009)Google Scholar
  15. 15.
    Zacharouli, P., Titsias, M., Vazirgiannis, M.: Web page rank prediction with PCA and EM clustering. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 104–115. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Elli Voudigari
    • 1
  • John Pavlopoulos
    • 1
  • Michalis Vazirgiannis
    • 1
    • 2
  1. 1.Department of InformaticsAthens University of Economics and BusinessGreece
  2. 2.Département Informatique et RéseauxInstitut Télécom, Ecole de Télécom ParisTechParisFrance

Personalised recommendations