In this work we formalize a natural expansion of timed argumentation frameworks by considering arguments that are available with (possibly) some repeated interruptions in time, called intermittent arguments. This framework is used as a modelization of argumentation dynamics. The notion of acceptability of arguments is analyzed as the framework evolves through time, and an algorithm for computing intervals of argument defense is introduced.


Abstract Argumentation Argumentation Framework Attack Relation Natural Expansion Semantic Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM 1(26), 832–843 (1983)CrossRefGoogle Scholar
  2. 2.
    Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based argumentation. In: 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 1–7. Morgan Kaufmann, San Francisco (1998)Google Scholar
  3. 3.
    Augusto, J.C., Simari, G.R.: Temporal defeasible reasoning. Knowl. Inf. Syst. 3(3), 287–318 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baroni, P., Giacomin, M.: Resolution-based argumentation semantics. In: Proc. of 2nd International Conf. on Computational Models of Argument (COMMA 2008), pp. 25–36 (2008)Google Scholar
  5. 5.
    Bench-Capon, T.: Value-based argumentation frameworks. In: Proc. of Nonmonotonic Reasoning, pp. 444–453 (2002)Google Scholar
  6. 6.
    Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.C.: Change in abstract argumentation frameworks: adding an argument. Journal of Artificial Intelligence Research 38, 49–84 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cobo, M., Martinez, D., Simari, G.: An approach to timed abstract argumentation. In: Proc. of Int. Workshop of Non-monotonic Reasoning 2010 (2010)Google Scholar
  8. 8.
    Cobo, M., Martinez, D., Simari, G.: On admissibility in timed abstract argumentation frameworks. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 1007–1008 (2010)Google Scholar
  9. 9.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constaints networks. In: Proceedings KR 1989, pp. 83–93 (1989)Google Scholar
  10. 10.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358Google Scholar
  11. 11.
    Jakobovits, H.: Robust semantics for argumentation frameworks. Journal of Logic and Computation 9(2), 215–261 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mann, N., Hunter, A.: Argumentation using temporal knowledge. In: Proc. of 2nd International Conf. on Computational Models of Argument (COMMA 2008), pp. 204–215 (2008)Google Scholar
  13. 13.
    Martínez, D.C., García, A.J., Simari, G.R.: Modelling well-structured argumentation lines. In: Proc. of XX IJCAI 2007, pp. 465–470 (2007)Google Scholar
  14. 14.
    Meiri, I.: Combining qualitative and quantitative contraints in temporal reasoning. In: Proceedings of AAAI 1992, pp. 260–267 (1992)Google Scholar
  15. 15.
    Rotstein, N.D., Moguillansky, M.O., Falappa, M.A., Garcia, A.J., Simari, G.R.: Argument theory change: Revision upon warrant. In: Proceeding of the 2008 Conference on Computational Models of Argument- COMMA 2008, pp. 336–347 (2008)Google Scholar
  16. 16.
    Rotstein, N.D., Moguillansky, M.O., Garcia, A.J., Simari, G.R.: An abstract argumentation framework for handling dynamics. In: Proc. of Int. Workshop of Non-monotonic Reasoning 2010, pp. 131–139 (2010)Google Scholar
  17. 17.
    Vreeswijk, G.A.W.: Abstract argumentation systems. Artificial Intelligence 90(1-2), 225–279 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Maria Laura Cobo
    • 1
  • Diego C. Martinez
    • 1
  • Guillermo R. Simari
    • 1
  1. 1.Artificial Intelligence Research and Development Laboratory (LIDIA), Department of Computer Science and EngineeringUniversidad Nacional del SurBahía Blanca - Bs. As.Argentina

Personalised recommendations