Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Engineering Applications of Neural Networks

IFIP International Conference on Artificial Intelligence Applications and Innovations

EANN 2011, AIAI 2011: Engineering Applications of Neural Networks pp 182–191Cite as

  1. Home
  2. Engineering Applications of Neural Networks
  3. Conference paper
Large Datasets: A Mixed Method to Adapt and Improve Their Learning by Neural Networks Used in Regression Contexts

Large Datasets: A Mixed Method to Adapt and Improve Their Learning by Neural Networks Used in Regression Contexts

  • Marc Sauget3,
  • Julien Henriet3,
  • Michel Salomon4 &
  • …
  • Sylvain Contassot-Vivier5 
  • Conference paper
  • 1478 Accesses

  • 1 Citations

  • 7 Altmetric

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 363)

Abstract

The purpose of this work is to further study the relevance of accelerating the Monte-Carlo calculations for the gamma rays external radiotherapy through feed-forward neural networks. We have previously presented a parallel incremental algorithm that builds neural networks of reduced size, while providing high quality approximations of the dose deposit [4]. Our parallel algorithm consists in an optimized decomposition of the initial learning dataset (also called learning domain) in as much subsets as available processors. However, although that decomposition provides subsets of similar signal complexities, their sizes may be quite different, still implying potential differences in their learning times. This paper presents an efficient data extraction allowing a good and balanced training without any loss of signal information. As will be shown, the resulting irregular decomposition permits an important improvement in the learning time of the global network.

Keywords

  • Pre-clinical studies
  • Doses Distributions
  • Neural Networks
  • Learning algorithms
  • External radiotherapy
  • Data extraction

Download conference paper PDF

References

  1. Bahi, J.M., Contassot-Vivier, S., Makovicka, L., Martin, E., Sauget, M.: Neurad. Agence pour la Protection des Programmes. No: IDDN.FR.001.130035.000.S.P.2006.000.10000 (2006)

    Google Scholar 

  2. Bahi, J.M., Contassot-Vivier, S., Makovicka, L., Martin, É., Sauget, M.: Neural network based algorithm for radiation dose evaluation in heterogeneous environments. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 777–787. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  3. Bahi, J.M., Contassot-Vivier, S., Sauget, M.: An incremental learning algorithm for functional approximation. Advances in Engineering Software 40(8), 725–730 (2009), doi:10.1016/j.advengsoft.2008.12.018

    CrossRef  MATH  Google Scholar 

  4. Bahi, J.M., Contassot-Vivier, S., Sauget, M., Vasseur, A.: A parallel incremental learning algorithm for neural networks with fault tolerance. In: Palma, J.M.L.M., Amestoy, P., Daydé, M.J., Mattoso, M., Lopes, J.C. (eds.) VECPAR 2008. LNCS, vol. 5336, pp. 174–187. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  5. BEAM-nrc: NRC of Canada, http://www.irs.inms.nrc.ca/BEAM/beamhome.html

  6. Blake, S.W.: Artificial neural network modelling of megavoltage photon dose distributions. Physics in Medicine and Biology 49, 2515–2526 (2004)

    CrossRef  Google Scholar 

  7. Chu, C.K., Deng, W.S.: An interpolation method for adapting to sparse design in multivariate nonparametric regression. Journal of Statistical Planning and Inference 116(1), 91–111 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Grochowski, M., Jankowski, N.: Comparison of instance selection algorithms ii. results and comments. In: Rutkowski, et al. [16], pp. 580–585

    Google Scholar 

  9. Guo, G., Zhang, J.S., Zhang, G.Y.: A method to sparsify the solution of support vector regression. Neural Comput. Appl. 19(1), 115–122 (2010)

    CrossRef  Google Scholar 

  10. Haas, O., Goodband, J.: Artificial Neural Networks in Radiation Therapy. In: Intelligent and Adaptive Systems in Medicine. Series in Medical Physics and Biomedical Engineering, pp. 213–258. Taylor & Francis, Abington (2008)

    CrossRef  Google Scholar 

  11. Jankowski, N., Grochowski, M.: Comparison of instances seletion algorithms i. algorithms survey. In: Rutkowski, et al. [16], pp. 598–603

    Google Scholar 

  12. Makovicka, L., Vasseur, A., Sauget, M., Martin, E., Gschwind, R., Henriet, J., Salomon, M.: Avenir des nouveaux concepts des calculs dosimétriques basés sur les méthodes de Monte Carlo. Radioprotection 44(1), 77–88 (2009), http://dx.doi.org/10.1051/radiopro/2008055

    CrossRef  Google Scholar 

  13. Computing Mesocenter of Franche-Comté, http://meso.univ-fcomte.fr

  14. Open Source High Performance Computing, http://www.open-mpi.org

  15. Pan, F., Wang, W.: Finding representative set from massive data. Tech. rep., IEEE International Conference on Data Mining (2005)

    Google Scholar 

  16. Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.): ICAISC 2004. LNCS (LNAI), vol. 3070. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  17. Sauget, M., Laurent, R., Henriet, J., Salomon, M., Gschwind, R., Contassot-Vivier, S., Makovicka, L., Soussen, C.: Efficient domain decomposition for a neural network learning algorithm, used for the dose evaluation in external radiotherapy. In: Diamantaras, K.I., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 261–266. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  18. Vasseur, A., Makovicka, L., Martin, E., Sauget, M., Contassot-Vivier, S., Bahi, J.M.: Dose calculations using artificial neural networks: a feasibility study for photon beams. Nucl. Instr. and Meth. in Phys. Res. B 266(7), 1085–1093 (2008)

    CrossRef  Google Scholar 

  19. Wu, A., Hsieh, W.W., Tang, B.: Neural network forecasts of the tropical pacific sea surface temperatures. Neural Networks 19(2), 145–154 (2006), earth Sciences and Environmental Applications of Computational Intelligence

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Femto-ST, ENISYS/IRMA, F-25210, Montbéliard Cedex, France

    Marc Sauget & Julien Henriet

  2. LIFC, EA 4269, University of Franche-Comté, BP 527, F-90016, Belfort Cedex, France

    Michel Salomon

  3. LORIA, UMR CNRS 7503, University Henri Poincaré, Nancy-1, France

    Sylvain Contassot-Vivier

Authors
  1. Marc Sauget
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Julien Henriet
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Michel Salomon
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Sylvain Contassot-Vivier
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Democritus University of Thrace, 68200 N., Orestiada, Greece

    Lazaros Iliadis

  2. London Metropolitan University, N7 8DB, London, UK

    Chrisina Jayne

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 International Federation for Information Processing

About this paper

Cite this paper

Sauget, M., Henriet, J., Salomon, M., Contassot-Vivier, S. (2011). Large Datasets: A Mixed Method to Adapt and Improve Their Learning by Neural Networks Used in Regression Contexts. In: Iliadis, L., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN AIAI 2011 2011. IFIP Advances in Information and Communication Technology, vol 363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23957-1_21

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-23957-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23956-4

  • Online ISBN: 978-3-642-23957-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature