Plugging Numeric Similarity in First-Order Logic Horn Clauses Comparison

  • S. Ferilli
  • T. M. A. Basile
  • N. Di Mauro
  • F. Esposito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6934)

Abstract

Horn clause Logic is a powerful representation language exploited in Logic Programming as a computer programming framework and in Inductive Logic Programming as a formalism for expressing examples and learned theories in domains where relations among objects must be expressed to fully capture the relevant information. While the predicates that make up the description language are defined by the knowledge engineer and handled only syntactically by the interpreters, they sometimes express information that can be properly exploited only with reference to a suitable background knowledge in order to capture unexpressed and underlying relationships among the concepts described. This is typical when the representation includes numerical information, such as single values or intervals, for which simple syntactic matching is not sufficient.

This work proposes an extension of an existing framework for similarity assessment between First-Order Logic Horn clauses, that is able to handle numeric information in the descriptions.

The viability of the solution is demonstrated on sample problems.

Keywords

Logic Program Logic Programming Numeric Attribute Inductive Logic Programming Horn Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biba, M., Esposito, F., Ferilli, S., Di Mauro, N., Basile, T.M.A.: Unsupervised discretization using kernel density estimation. In: IJCAI 2007, pp. 696–701 (2007)Google Scholar
  2. 2.
    Ceri, S., Gottlöb, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  3. 3.
    Esposito, F., Fanizzi, N., Ferilli, S., Semeraro, G.: A generalization model based on oi-implication for ideal theory refinement. Fundamenta Informaticæ 47(1-2), 15–33 (2001)MathSciNetMATHGoogle Scholar
  4. 4.
    Ferilli, S., Basile, T.M.A., Biba, M., Di Mauro, N., Esposito, F.: A general similarity framework for horn clause logic. Fundamenta Informaticæ 90(1-2), 43–46 (2009)MathSciNetMATHGoogle Scholar
  5. 5.
    Ferilli, S., Biba, M., Mauro, N., Basile, T.M., Esposito, F.: Plugging taxonomic similarity in first-order logic horn clauses comparison. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 131–140. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th International Conf. on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)Google Scholar
  7. 7.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)CrossRefMATHGoogle Scholar
  8. 8.
    Muggleton, S.: Inductive logic programming. New Generation Computing 8(4), 295–318 (1991)CrossRefMATHGoogle Scholar
  9. 9.
    Rouveirol, C.: Extensions of inversion of resolution applied to theory completion. In: Inductive Logic Programming, pp. 64–90. Academic Press, London (1992)Google Scholar
  10. 10.
    Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of the 4th International Workshop on Inductive Logic Programming. GMD-Studien, vol. 237, pp. 217–232 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. Ferilli
    • 1
    • 2
  • T. M. A. Basile
    • 1
  • N. Di Mauro
    • 1
    • 2
  • F. Esposito
    • 1
    • 2
  1. 1.Dipartimento di InformaticaUniversità di BariItaly
  2. 2.Centro Interdipartimentale per la Logica e sue ApplicazioniUniversità di BariItaly

Personalised recommendations