Intelligent Supervision for Robust Plan Execution

  • Roberto Micalizio
  • Enrico Scala
  • Pietro Torasso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6934)


The paper addresses the problem of supervising the execution of a plan with durative actions in a just partially known world, where discrepancies between the expected conditions and the ones actually found may arise. The paper advocates a control architecture which exploits additional knowledge to prevent (when possible) action failures by changing the execution modality of actions while these are still in progress. Preliminary experimental results, obtained in a simulated space exploration scenario, are reported.


Plan Execution Intelligent Supervision Robotic Agents Control Architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouguerra, A., Karlsson, L., Saffiotti, A.: Monitoring the execution of robot plans using semantic knowledge. Robotics and Autonomous Systems 56, 942–954 (2008)CrossRefGoogle Scholar
  2. 2.
    Bozzano, M., Cimatti, A., Roveri, M., Tchaltsev, A.: A comprehensive approach to on-board autonomy verification and validation. In: ICAPS 2009 Workshop on Verification and Validation of Planning and Scheduling Systems (2009)Google Scholar
  3. 3.
    Micalizio, R.: A distributed control loop for autonomous recovery in a multi-agent plan. In: Proc. IJCAI 2009, pp. 1760–1765 (2009)Google Scholar
  4. 4.
    Micalizio, R., Torasso, P.: Monitoring the execution of a multi-agent plan: Dealing with partial observability. In: Proc. ECAI 2008, pp. 408–412 (2008)Google Scholar
  5. 5.
    Musso, I., Micalizio, R., Scala, E., et al.: Communication scheduling and plans revision for planetary rovers. In: Proc. of i-SAIRAS 2010 (2010)Google Scholar
  6. 6.
    Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)zbMATHGoogle Scholar
  7. 7.
    Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for autonomy. International Journal of Robotics Research 17(4), 315–337 (1998)CrossRefGoogle Scholar
  8. 8.
    Calisi, D., Iocchi, L., Nardi, D., Scalzo, C., Ziparo, V.A.: Context-based design of robotic systems. Robotics and Autonomous Systems (RAS) - Special Issue on Semantic Knowledge in Robotics 56(11), 992–1003 (2008)CrossRefGoogle Scholar
  9. 9.
    Dousson, C., Le Maigat, P.: Chronicle recognition improvement using temporal focusing and hierarchization. In: IJCAI 2007, pp. 324–329 (2007)Google Scholar
  10. 10.
    Nesnas, I.A.: Claraty: A collaborative software for advancing robotic technologies. In: Proc. of NASA Science and Technology Conference (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roberto Micalizio
    • 1
  • Enrico Scala
    • 1
  • Pietro Torasso
    • 1
  1. 1.Università di Torino corsoTorinoItaly

Personalised recommendations