Dealing with Crowd Crystals in MAS-Based Crowd Simulation: A Proposal

  • Stefania Bandini
  • Lorenza Manenti
  • Luca Manzoni
  • Sara Manzoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6934)


The paper presents an agent-based model for the explicit representation of groups of pedestrians in a crowd. The model is the result of a multidisciplinary research (CRYSTALS project) where multicultural dynamics and spatial and socio-cultural relationships among individuals are considered as first class elements for the simulation of crowd of pilgrims taking to the annual pilgrimage towards Makkah. After an introduction of advantages of Multi-Agent System approach for pedestrian dynamics modelling, a formal description of the model is proposed. The scenario in which the model was developed and some examples about modelling heterogeneous groups of pedestrians are described.


crowd groups agent-based model proxemics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandini, S., Manzoni, S., Vizzari, G.: Crowd Behaviour Modeling: From Cellular Automata to Multi-Agent Systems. In: Multi-Agent Systems: Simulation and Applications. CRC Press, Boca Raton (2009)Google Scholar
  2. 2.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st edn. Addison-Wesley Longman Publishing, Boston (1999)Google Scholar
  3. 3.
    Wooldridge, M.: An introduction to multiagent systems. Wiley, Chichester (2002)Google Scholar
  4. 4.
    Baldoni, M., Baroglio, C., Mascardi, V., Omicini, A., Torroni, P.: Agents, multi-agent systems and declarative programming: What, when, where, why, who, how? In: 25 Years GULP, pp. 204–230 (2010)Google Scholar
  5. 5.
    Omicini, A., Piunti, M., Ricci, A., Viroli, M.: Agents, intelligence and tools. In: Artificial Intelligence: An International Perspective, pp. 157–173 (2009)Google Scholar
  6. 6.
    Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Satisfied or compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Klugl, F., Rindsfuser, G.: Large-scale agent-based pedestrian simulation. In: Proceedings of the 5th German Conference on Multiagent System Technologies, pp. 145–156 (2007)Google Scholar
  8. 8.
    Toyama, M., Bazzan, A., Da Silva, R.: An agent-based simulation of pedestrian dynamics: from lane formation to auditorium evacuation. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 108–110. ACM Press, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Vizzari, G., Manzoni, S., Bandini, S.: Simulating and Visualizing Crowd Dynamics with Computational Tools based on Situated Cellular Agents. Pedestrian Behavior: Models, Data Collection, and Applications (2009)Google Scholar
  10. 10.
    Rogsch, C., Klingsch, W., Schadschneider, A.: Pedestrian and evacuation dynamics 2008. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  11. 11.
    Challenger, R., Clegg, C., Robinson, M.: Understanding Crowd Behaviours, vol. 1. Cabinet Office (2009)Google Scholar
  12. 12.
    Canetti, E.: Crowds and Power. In: Gollancz, V, ed. (1962)Google Scholar
  13. 13.
    Hall, E.: The hidden dimension. Doubleday, New York (1966)Google Scholar
  14. 14.
    Manenti, L., Manzoni, S., Vizzari, G., Kazumichi, O., Shimura, K.: Towards an Agent- Based Proxemic Model for Pedestrian and Group Dynamic. In: Proceedings of the 11th Italian Workshop From Objects to Agents, WOA 2010. CEUR, vol. 631 (2010)Google Scholar
  15. 15.
    Lembo, P., Manenti, L., Manzoni, S.: Towards patterns of comfort: A multilayered model based on situated multi-agent systems. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 439–445. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Manenti, L., Manzoni, L., Manzoni, S.: Towards an application of graph structure analysis to a mas-based model of proxemic distances in pedestrian systems. CEUR, vol. 631 (2010)Google Scholar
  17. 17.
    Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proceedings, Biological Sciences / The Royal Society 276, 2755–2762 (2009)CrossRefGoogle Scholar
  18. 18.
    Qiu, F., Hu, X.: Modeling dynamic groups for agent-based pedestrian crowd simulations. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 461–464 (2010)Google Scholar
  19. 19.
    Qiu, F., Hu, X., Wang, X., Karmakar, S.: Modeling Social Group Structures in Pedestrian Crowds. Simulation Modelling Practice and Theory (SIMPAT) 18, 190–205 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefania Bandini
    • 1
    • 2
  • Lorenza Manenti
    • 1
    • 2
  • Luca Manzoni
    • 1
  • Sara Manzoni
    • 1
    • 2
  1. 1.CSAI - Complex Systems & Artificial Intelligence Research CenterUniversita’ di Milano-BicoccaMilanoItaly
  2. 2.Centre of Research Excellence in Hajj and OmrahUmm Al-Qura UniversityMakkahSaudi Arabia

Personalised recommendations