On the Power of Fault Sensitivity Analysis and Collision Side-Channel Attacks in a Combined Setting

  • Amir Moradi
  • Oliver Mischke
  • Christof Paar
  • Yang Li
  • Kazuo Ohta
  • Kazuo Sakiyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6917)

Abstract

At CHES 2010 two powerful new attacks were presented, namely the Fault Sensitivity Analysis and the Correlation Collision Attack. This paper shows how these ideas can be combined to create even stronger attacks. Two solutions are presented; both extract leakage information by the fault sensitivity analysis method while each one applies a slightly different collision attack to deduce the secret information without the need of any hypothetical leakage model. Having a similar fault injection method, one attack utilizes the non-uniform distribution of faulty ciphertext bytes while the other one exploits the data-dependent timing characteristics of the target combination circuit. The results when attacking several AES ASIC cores of the SASEBO LSI chips in different process technologies are presented. Successfully breaking the cores protected against DPA attacks using either gate-level countermeasures or logic styles indicates the strength of the attacks.

Keywords

Clock Signal Fault Injection Combinational Circuit Collision Attack Fault Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cryptographic Circuits with Logic Level Countermeasures against DPA. Information and Physical Security Research Group, YOKOHAMA National University, http://ipsr.ynu.ac.jp/circuit/
  2. 2.
    Side-channel Attack Standard Evaluation Board (SASEBO-R). Further information are available via, http://staff.aist.go.jp/akashi.satoh/SASEBO/en/board/sasebo-r.html
  3. 3.
    ISO/IEC 18033-3 Standard Cryptographic LSI – with Side Channel Attack Countermeasures – Specification, ver 1.0 (2009), http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI2_Spec_Ver1.0_English.pdf
  4. 4.
    Standard Cryptographic LSI Specification – Countermeasures against Side Channel Attacks (65nm) – Specification, ver 0.9 (2010), http://staff.aist.go.jp/akashi.satoh/SASEBO/resources/crypto_lsi/CryptoLSI3_Spec_Ver0.9_English.pdf
  5. 5.
    Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Bogdanov, A.: Multiple-Differential Side-Channel Collision Attacks on AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Endo, S., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: An on-chip glitchy-clock generator and its application to safe-error attack. In: COSADE 2011, pp. 175–182 (2011)Google Scholar
  8. 8.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Li, Y., Ohta, K., Sakiyama, K.: Revisit Fault Sensitivity Analysis on WDDL-AES. In: HOST 2010, pp. 148–153. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  14. 14.
    Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault Sensitivity Analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 320–334. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010); The extended version is available on ePrint Archive, Report 2010/297, http://eprint.iacr.org/ CrossRefGoogle Scholar
  16. 16.
    Moradi, A., Mischke, O., Paar, C.: Collision Timing Attack when Breaking 42 AES ASIC Cores. Cryptology ePrint Archive, Report 2011/162 (2011), http://eprint.iacr.org/
  17. 17.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Saeki, M., Suzuki, D., Shimizu, K., Satoh, A.: A Design Methodology for a DPA-Resistant Cryptographic LSI with RSL Techniques. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 189–204. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-Performance Concurrent Error Detection Scheme for AES Hardware. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Trichina, E.: Combinational Logic Design for AES SubByte Transformation on Masked Data. Cryptology ePrint Archive, Report 2003/236 (2003), http://eprint.iacr.org/
  25. 25.
    Veyrat-Charvillon, N., Standaert, F.-X.: Generic Side-Channel Distinguishers: Improvements and Limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 354–372. Springer, Heidelberg (2011); The extended version is available on ePrint Archive, Report 2011/149, http://eprint.iacr.org/ CrossRefGoogle Scholar
  26. 26.
    XILINX. Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Technical report version 4. 2 (2007), http://www.xilinx.com/support/documentation/user_guides/ug012.pdf

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Amir Moradi
    • 1
  • Oliver Mischke
    • 1
  • Christof Paar
    • 1
  • Yang Li
    • 2
  • Kazuo Ohta
    • 2
  • Kazuo Sakiyama
    • 2
  1. 1.Horst Görtz Institute for IT SecurityRuhr University BochumGermany
  2. 2.Department of InformaticsThe University of Electro-CommunicationsChofuJapan

Personalised recommendations