Advertisement

Thwarting Higher-Order Side Channel Analysis with Additive and Multiplicative Maskings

  • Laurie Genelle
  • Emmanuel Prouff
  • Michaël Quisquater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6917)

Abstract

Higher-order side channel attacks is a class of powerful techniques against cryptographic implementations. Their complexity grows exponentially with the order, but for small orders (e.g. 2 and 3) recent studies have demonstrated that they pose a serious threat in practice. In this context, it is today of great importance to design software countermeasures enabling to counteract higher-order side channel attacks for any arbitrary chosen order. At CHES 2010, Rivain and Prouff have introduced such a countermeasure for the AES. It works for any arbitrary chosen order and benefits from a formal resistance proof. Until now, it was the single one with such assets. By generalizing at any order a countermeasure introduced at ACNS 2010 by Genelle etal., we propose in this paper an alternative to Rivain and Prouff’s solution. The new scheme can also be proven secure at any order and has the advantage of being at least 2 times more efficient than the existing solutions for orders 2 and 3, while maintaining the RAM consumption lower than 200 bytes.

Keywords

Power Function Smart Card Block Cipher Secure Processing Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC 1988: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM, New York (1988)CrossRefGoogle Scholar
  3. 3.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Coron, J.-S.: A New DPA Countermeasure Based on Permutation Tables. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 278–292. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine Masking against Higher-Order Side Channel Analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Genelle, L., Prouff, E., Quisquater, M.: Secure Multiplicative Masking of Power Functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 200–217. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Genelle, L., Prouff, E., Quisquater, M.: Montgomery’s trick and fast implementation of masked AES. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 153–169. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Genelle, L., Prouff, E., Quisquater, M.: Thwarting Higher-Order Side Channel Analysis with Additive and Multplicative Masking. Cryptology ePrint Archive (to appear, 2011)Google Scholar
  10. 10.
    Golić, J., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Joye, M., Paillier, P., Schoenmakers, B.: On second-order differential power analysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Oswald, E., Mangard, S.: Template Attacks on Masking—Resistance Is Futile. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA attacks for masked smart card implementations of block ciphers. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Oswald, E., Mangard, S., Pramstaller, N.: Secure and Efficient Masking of AES – A Mission Impossible? Cryptology ePrint Archive, Report 2004/134 (2004)Google Scholar
  17. 17.
    Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved higher-order side-channel attacks with FPGA experiments. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report 2008/021 (2008), http://eprint.iacr.org/
  20. 20.
    Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure Against Second Order Side Channel Analysis. In: Baignères, T., Vaudenay, S. (eds.) FSE 2008. LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Trichina, E., DeSeta, D., Germani, L.: Simplified adaptive multiplicative masking for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 187–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Laurie Genelle
    • 1
  • Emmanuel Prouff
    • 1
  • Michaël Quisquater
    • 2
  1. 1.Oberthur TechnologiesFrance
  2. 2.University of VersaillesFrance

Personalised recommendations