Dose Monitoring in Prostate Cancer Radiotherapy Using CBCT to CT Constrained Elastic Image Registration

  • Guillaume Cazoulat
  • Antoine Simon
  • Oscar Acosta
  • Juan David Ospina
  • Khemara Gnep
  • Romain Viard
  • Renaud de Crevoisier
  • Pascal Haigron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6963)

Abstract

The recent concept of Dose Guided Radiotherapy (DGRT) consists in computing a cumulative dose distribution at each treatment fraction to decide if a treatment replanning is necessary. These cumulative dose distributions are obtained by mapping the daily dose distributions with the results of a non-rigid registration between the planning CT scan and daily CBCT images. But, mainly because of large deformations and of the scatter effect of CBCT, the application of this methodology to prostate cancer radiotherapy is very challenging. In this paper, we adapt a nonparametric non-rigid registration algorithm based on Mutual Information to register the daily CBCT scan to the planning CT scan in the context of prostate cancer DGRT. In order to improve registration accuracy, we then propose a modification of the registration framework to introduce landmark constraints. We show that this constrained non-rigid registration algorithm was able to significantly increase the accuracy of the cumulative dose estimation.

Keywords

Mutual Information Cone Beam Compute Tomography Normalize Mutual Information Registration Error Organ Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thilmann, C., Nill, S., Tucking, T., Hoss, A., Hesse, B., Dietrich, L., Bendl, R., Rhein, B., Haring, P., Thieke, C., et al.: Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences. Radiation Oncology 1(1), 16 (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, J., Morin, O., Aubin, M., Bucci, M., Chuang, C., Pouliot, J.: Dose-guided radiation therapy with megavoltage cone-beam CT. Br. J. Radiol. 79, S87–S98 (2006)CrossRefGoogle Scholar
  3. 3.
    Pouliot, J.: Megavoltage imaging, megavoltage cone beam CT and dose-guided radiation therapy. Front. Radiat. Ther. Oncol. 40, 132–142 (2007)CrossRefGoogle Scholar
  4. 4.
    Schaly, B., Kempe, J., Bauman, G., Battista, J., Dyk, J.: Tracking the dose distribution in radiation therapy by accounting for variable anatomy. Physics in Medicine and Biology 49, 791 (2004)CrossRefGoogle Scholar
  5. 5.
    Foskey, M., Davis, B., Goyal, L., Chang, S., Chaney, E., Strehl, N., Tomei, S., Rosenman, J., Joshi, S.: Large deformation three-dimensional image registration in image-guided radiation therapy. Physics in Medicine and Biology 50, 5869 (2005)CrossRefGoogle Scholar
  6. 6.
    Zhong, H., Siebers, J.V.: Monte Carlo dose mapping on deforming anatomy. Physics in medicine and biology 54, 5815 (2009)CrossRefGoogle Scholar
  7. 7.
    Greene, W.H., Chelikani, S., Purushothaman, K., Chen, Z., Knisely, J.P.S., Staib, L.H., Papademetris, X., Duncan, J.: A constrained non-rigid registration algorithm for use in prostate image-guided radiotherapy. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 780–788. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Lu, C., Chelikani, S., Papademetris, X., Staib, L., Duncan, J.: Constrained non-rigid registration using lagrange multipliers for application in prostate radiotherapy. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 133–138. IEEE, Los Alamitos (2010)Google Scholar
  9. 9.
    Nithiananthan, S., Brock, K., Daly, M., Chan, H., Irish, J.C., Siewerdsen, J.H.: Demons deformable registration for CBCT-guided procedures in the head and neck: Convergence and accuracy. Medical physics 36, 4755 (2009)CrossRefGoogle Scholar
  10. 10.
    Nithiananthan, S., Schafer, S., Uneri, A., Mirota, D., Stayman, J., Zbijewski, W., Brock, K., Daly, M., Chan, H., Irish, J., Siewerdsen, J.: Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach. Medical physics 38, 1785–1798 (2011)CrossRefGoogle Scholar
  11. 11.
    Modat, M., Vercauteren, T., Ridgway, G., Hawkes, D., Fox, N., Ourselin, S.: Diffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images (proceedings paper) (2010)Google Scholar
  12. 12.
    Rogelj, P., Kovai, S., Gee, J.: Point similarity measures for non-rigid registration of multi-modal data. Computer vision and image understanding 92(1), 112–140 (2003)CrossRefGoogle Scholar
  13. 13.
    Pennec, X., Cachier, P., Ayache, N.: Understanding the demon’s algorithm: 3D non-rigid registration by gradient descent. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 597–605. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical image analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Guillaume Cazoulat
    • 1
    • 2
  • Antoine Simon
    • 1
    • 2
  • Oscar Acosta
    • 1
    • 2
  • Juan David Ospina
    • 1
    • 2
  • Khemara Gnep
    • 3
  • Romain Viard
    • 4
  • Renaud de Crevoisier
    • 1
    • 2
    • 3
  • Pascal Haigron
    • 1
    • 2
  1. 1.INSERM, U 642RennesFrance
  2. 2.Université de Rennes 1, LTSIFrance
  3. 3.Département de RadiothérapieCentre Eugène MarquisRennesFrance
  4. 4.AquilabLoos Les LilleFrance

Personalised recommendations