Spatial Characterization and Classification of Rectal Bleeding in Prostate Cancer Radiotherapy with a Voxel-Based Principal Components Analysis Model for 3D Dose Distribution

  • Baiyang Chen
  • Oscar Acosta
  • Amar Kachenoura
  • Juan David Ospina
  • Gaël Dréan
  • Antoine Simon
  • Jean-Jacques Bellanger
  • Pascal Haigron
  • Renaud de Crevoisier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6963)

Abstract

Although external beam radiotherapy is one of the most commonly prescribed treatments for prostate cancer, severe complications may arise as a result of high delivered doses to the neighboring organs at risk, namely the bladder and the rectum. The prediction of this toxicity events are commonly based on the planned dose distribution using the dose-volume histograms within predictive models. However, as different spatial dose distributions may produce similar dose-volume histograms, these models may not be accurate in revealing the subtleties of the dose-effect relationships. Using the prescribed dose, we propose a voxel-based principal component analysis method for characterizing and classifying those individuals at risk of rectal bleeding. Sixty-five cases of patients treated for prostate cancer were reviewed; fifteen of them presented rectal bleeding within two years after the treatment. The method was able to classify rectal bleeding with 0.8 specificity and 0.73 sensitivity. In addition, eigenimages with the most discriminant features suggest that some specific dose patterns are related to rectal bleeding.

Keywords

Prostate Cancer Dose Distribution Rectal Bleeding Discriminant Feature Normal Tissue Complication Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fiorino, C., Rancati, T., Valdagni, R.: Predictive models of toxicity in external radiotherapy: dosimetric issues. Cancer 115 (suppl. 13), 3135–3140 (2009)CrossRefGoogle Scholar
  2. 2.
    de Crevoisier, R., Tucker, S.L., Dong, L., Mohan, R., Cheung, R., Cox, J.D., Kuban, D.A.: Increased risk of biochemical and local failure in patients with distended rectum on the planning ct for prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 62(4), 965–973 (2005)CrossRefGoogle Scholar
  3. 3.
    Ting, J.Y., Wu, X., Fiedler, J.A., Yang, C., Watzich, M.L., Markoe, A.: Dose-volume histograms for bladder and rectum. Int. J. Radiat. Oncol. Biol. Phys. 38(5), 1105–1111 (1997)CrossRefGoogle Scholar
  4. 4.
    Sohn, M., Alber, M., Yan, D.: Principal component analysis-based pattern analysis of dose-volume histograms and influence on rectal toxicity. Int. J. Radiat. Oncol. Biol. Phys. 69(1), 230–239 (2007)CrossRefGoogle Scholar
  5. 5.
    Fiorino, C., Vavassori, V., Sanguineti, G., Bianchi, C., Cattaneo, G.M., Piazzolla, A., Cozzarini, C.: Rectum contouring variability in patients treated for prostate cancer: impact on rectum dose-volume histograms and normal tissue complication probability. Radiother Oncol. 63(3), 249–255 (2002)CrossRefGoogle Scholar
  6. 6.
    Fiorino, C., Cozzarini, C., Vavassori, V., Sanguineti, G., Bianchi, C., Cattaneo, G.M., Foppiano, F., Magli, A., Piazzolla, A.: Relationships between dvhs and late rectal bleeding after radiotherapy for prostate cancer: analysis of a large group of patients pooled from three institutions. Radiother Oncol. 64(1), 1–12 (2002)CrossRefGoogle Scholar
  7. 7.
    Marzi, S., Arcangeli, G., Saracino, B., Petrongari, M.G., Bruzzaniti, V., Iaccarino, G., Landoni, V., Soriani, A., Benassi, M.: Relationships between rectal wall dose-volume constraints and radiobiologic indices of toxicity for patients with prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 68(1), 41–49 (2007)CrossRefGoogle Scholar
  8. 8.
    Benk, V.A., Adams, J.A., Shipley, W.U., Urie, M.M., McManus, P.L., Efird, J.T., Willett, C.G., Goitein, M.: Late rectal bleeding following combined x-ray and proton high dose irradiation for patients with stages t3-t4 prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 26(3), 551–557 (1993)CrossRefGoogle Scholar
  9. 9.
    Rancati, T., Fiorino, C., Gagliardi, G., Cattaneo, G.M., Sanguineti, G., Borca, V.C., Cozzarini, C., Fellin, G., Foppiano, F., Girelli, G., Menegotti, L., Piazzolla, A., Vavassori, V., Valdagni, R.: Fitting late rectal bleeding data using different ntcp models: results from an italian multi-centric study (airopros0101). Radiother Oncol. 73(1), 21–32 (2004)CrossRefGoogle Scholar
  10. 10.
    Kupchak, C., Battista, J., Dyk, J.V.: Experience-driven dose-volume histogram maps of NTCP risk as an aid for radiation treatment plan selection and optimization. Med. Phys. 35, 333–343 (2008)CrossRefGoogle Scholar
  11. 11.
    Buettner, F., Gulliford, S.L., Webb, S., Sydes, M.R., Dearnaley, D.P., Partridge, M.: Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: an analysis of data from the mrc rt01 trial (isrctn 47772397). Physics in Medicine and Biology 54(21), 6535 (2009)CrossRefGoogle Scholar
  12. 12.
    Buettner, F., Gulliford, S.L., Webb, S., Partridge, M.: Modeling late rectal toxicities based on a parameterized representation of the 3d dose distribution. Physics in Medicine and Biology 56(7), 2103 (2011)CrossRefGoogle Scholar
  13. 13.
    Jain, A.K., Duin, R.P., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on pattern analysis and machine intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  14. 14.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.: Statistical Parametric Maps in Functional Imaging: A General LInear Approach. In: Human Brain Mapping, pp. 189–210 (1995)Google Scholar
  15. 15.
    Heemsbergen, W.D., Al-Mamgani, A., Witte, M.G., van Herk, M., Pos, F.J., Lebesque, J.V.: Urinary obstruction in prostate cancer patients from the dutch trial (68 gy vs. 78 gy): Relationships with local dose, acute effects, and baseline characteristics. Int. J. Radiat. Oncol. Biol. Phys. (January 2010)Google Scholar
  16. 16.
    Witte, M.G., Heemsbergen, W.D., Bohoslavsky, R., Pos, F.J., Al-Mamgani, A., Lebesque, J.V., van Herk, M.: Relating dose outside the prostate with freedom from failure in the dutch trial 68 gy vs. 78 gy. Int. J. Radiat. Oncol. Biol. Phys. 77(1), 131–138 (2010)CrossRefGoogle Scholar
  17. 17.
    Fripp, J., Bourgeat, P., Acosta, O., Raniga, P., Modat, M., Pike, K.E., Jones, G., O’Keefe, G., Masters, C.L., Ames, D., Ellis, K.A., Maruff, P., Currie, J., Villemagne, V.L., Rowe, C.C., Salvado, O., Ourselin, S.: Appearance modeling of (11)c pib pet images: Characterizing amyloid deposition in alzheimer’s disease, mild cognitive impairment and healthy aging. NeuroImage (August 2008)Google Scholar
  18. 18.
    Higdon, R., Foster, N., Koeppe, R., DeCarli, C., Jagust, W., Clark, C., Barbas, N., Arnold, S., Turner, R., Heidebrink, J., Minoshima, S.: A comparison of classification methods for differentiating fronto-temporal dementia from alzheimer’s disease using fdg-pet imaging. Statistical Medicine 23(2), 315–326 (2004)CrossRefGoogle Scholar
  19. 19.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Baiyang Chen
    • 1
    • 2
  • Oscar Acosta
    • 1
    • 2
  • Amar Kachenoura
    • 1
    • 2
  • Juan David Ospina
    • 1
    • 2
    • 4
  • Gaël Dréan
    • 1
    • 2
  • Antoine Simon
    • 1
    • 2
  • Jean-Jacques Bellanger
    • 1
    • 2
  • Pascal Haigron
    • 1
    • 2
  • Renaud de Crevoisier
    • 1
    • 2
    • 3
  1. 1.INSERM, U 642RennesFrance
  2. 2.Université de Rennes 1, LTSIFrance
  3. 3.Département de RadiothérapieCentre Eugène MarquisRennesFrance
  4. 4.School of StatisticsUniversidad Nacional de ColombiaColombia

Personalised recommendations