Advertisement

Villous Maldevelopment

  • Kurt Benirschke
  • Graham J. Burton
  • Rebecca N. Baergen
Chapter

Abstract

Histopathology is most commonly based on the analysis of paraffin sections, and thus the normal and pathological features of the placenta are usually described on the basis of two-dimensional appearances. Often, these appearances do not accurately reflect the underlying three-dimensional configuration of villi, as becomes particularly obvious when considering the finding of “syncytial knotting.”

Keywords

Tangential Section HELLP Syndrome Spiral Artery Maternal Anemia Villous Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ali KZM (1997) Stereological study of the effect of altitude on the trophoblast cell populations of human term placental villi. Placenta 18:447–450PubMedCrossRefGoogle Scholar
  2. Ali KZM, Burton GJ, Morad N, Ali ME (1996) Does hypercapillarization influence the branching pattern of terminal villi in the human placenta at high altitude? Placenta 17:677–682PubMedCrossRefGoogle Scholar
  3. Altshuler G (1993) A conceptual approach to placental pathology and pregnancy outcome. Semin Diagn Pathol 10:204–221PubMedGoogle Scholar
  4. Alvarez H, Benedetti WL, De Leonis VK (1967) Syncytial proliferation in normal and toxemic pregnancies. Obstet Gynecol 29:637–643PubMedGoogle Scholar
  5. Alvarez H, Benedetti WL, Morel RL, Scavarelli M (1970) Trophoblast development gradient and its relationship to placental hemodynamics. Am J Obstet Gynecol 106:416–420PubMedGoogle Scholar
  6. Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT (2010) Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci USA 107:11459–11464PubMedCrossRefGoogle Scholar
  7. Becker V (1981) Pathologie der Ausreifung der Plazenta. In: Becker V, Schiebler TH, Kubli F (eds) Die Plazenta des Menschen. Thieme, Stuttgart, pp 266–281Google Scholar
  8. Beischer NA, Sivasamboo R, Vohra S, Silpisornkosal S, Reid S (1970) Placental hypertrophy in severe pregnancy anaemia. J Obstet Gynaecol Br Commonw 77:398–409PubMedCrossRefGoogle Scholar
  9. Boyd JD, Hamilton WJ (1970) The human placenta. Heffer and Sons, CambridgeGoogle Scholar
  10. Bracero LA, Beneck D, Kirshenbaum N, Peiffer M, Stalter P, Schulman H (1989) Doppler velocimetry and placental disease. Am J Obstet Gynecol 161:388–393PubMedCrossRefGoogle Scholar
  11. Brosens I (1988) The utero-placental vessels at term-the distribution and extent of physiological changes. Trophoblast Res 3:61–68Google Scholar
  12. Brosens I, Dixon HG, Robertson WB (1977) Fetal growth retardation and the arteries of the placental bed. Br J Obstet Gynaecol 84:656–663PubMedGoogle Scholar
  13. Burton GJ (1986a) Intervillous bridges in the mature human placenta; syncytial fusion or section artifacts? J Anat 145:12–23Google Scholar
  14. Burton GJ (1986b) Scanning electron microscopy of intervillous connections in the mature human placenta. J Anat 147:245–254PubMedGoogle Scholar
  15. Burton GJ (1987) The fine structure of the human placenta as revealed by scanning electron microscopy. Scanning Microsc 1:1811–1828PubMedGoogle Scholar
  16. Burton GJ (1997) On ‘Oxygen and placental villous development: origins of fetal hypoxia’. Placenta 18:625–626CrossRefGoogle Scholar
  17. Burton GJ, Jones CJ (2009) Syncytial knots, sprouts, apoptosis, and trophoblast deportation from the human placenta. Taiwan J Obstet Gynecol 48:28–37PubMedCrossRefGoogle Scholar
  18. Burton GJ, Woods AW, Jauniaux E, Kingdom JC (2009a) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30:473–482PubMedCrossRefGoogle Scholar
  19. Burton GJ, Charnock-Jones DS, Jauniaux E (2009b) Regulation of vascular growth and function in human placenta. Reproduction 138:895–902PubMedCrossRefGoogle Scholar
  20. Burton GJ, Yung HW, Cindrova-Davies T, Charnock-Jones DS (2009c) Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30 Suppl A:S43–S48PubMedCrossRefGoogle Scholar
  21. Burton GJ, (2011) Deportation of syncytial sprouts from the term human placenta. Placenta 32:96–98PubMedCrossRefGoogle Scholar
  22. Cantle SJ, Kaufmann P, Luckhardt M, Schweikhart G (1987) Interpretation of syncytial sprouts and bridges in the human placenta. Placenta 8:221–234PubMedCrossRefGoogle Scholar
  23. Castellucci M, Scheper M, Scheffen I, Celona A, Kaufmann P (1990) The development of the human placental villous tree. Anat Embryol 181:117–128PubMedCrossRefGoogle Scholar
  24. Charnock-Jones DS, Kaufmann P, Mayhew TM (2004) Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta 25:103–113PubMedCrossRefGoogle Scholar
  25. Cindrova-Davies T, Yung HW, Johns J, Spasic-Boskovic O, Korolchuk S, Jauniaux E, Burton GJ, Charnock-Jones DS (2007) Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. Am J Pathol 171:1168–1179PubMedCrossRefGoogle Scholar
  26. Egbor M, Ansari T, Morris N, Green CJ, Sibbons PD (2006) Pre-eclampsia and fetal growth restriction: how morphometrically different is the placenta? Placenta 27:727–734PubMedCrossRefGoogle Scholar
  27. Fok RY, Pavlova Z, Benirschke K, Paul RH, Platt LD (1990) The correlation of arterial lesions with umbilical artery Doppler velocimetry in the placentas of small-for-dates pregnancies. Obstet Gynecol 75:578–583PubMedGoogle Scholar
  28. Fox H (1965) The significance of villous syncytial knots in the human placenta. J Obstet Gynaecol Br Commonw 72:347–355PubMedCrossRefGoogle Scholar
  29. Fox H (1968) Villous immaturity in the term placenta. Obstet Gynecol 31:9–12PubMedCrossRefGoogle Scholar
  30. Fox H, Sebire NJ (2007) Pathology of the placenta. Saunders Elsevier, AmsterdamGoogle Scholar
  31. Gerretsen G, Huisjes HJ, Elema JD (1981) Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol 88:876–881PubMedCrossRefGoogle Scholar
  32. Giles WB, Trudinger BJ, Baird PJ (1985) Fetal umbilical artery flow velocity waveforms and placental resistance: pathological correlation. Br J Obstet Gynaecol 92:31–38PubMedCrossRefGoogle Scholar
  33. Hitschold T, Weiss E, Beck T, Huntefering H, Berle P (1993) Low target birth weight or growth retardation? Umbilical Doppler flow velocity waveforms and histometric analysis of fetoplacental vascular tree. Am J Obstet Gynecol 168:1260–1264PubMedCrossRefGoogle Scholar
  34. Hung TH, Burton GJ (2006) Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol 45:189–200PubMedCrossRefGoogle Scholar
  35. Hung TH, Skepper JN, Burton GJ (2001) In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol 159:1031–1043PubMedCrossRefGoogle Scholar
  36. Jackson MR, Mayhew TM, Haas JD (1987) Morphometric studies on villi in human term placentae and the effects of altitude, ethnic grouping and sex of newborn. Placenta 8:487–495PubMedCrossRefGoogle Scholar
  37. Jackson MR, Mayhew TM, Haas JD (1988a) On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. I. Thinning and regional variation in thickness of trophoblast. Placenta 9:1–8PubMedCrossRefGoogle Scholar
  38. Jackson MR, Mayhew TM, Haas JD (1988b) On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. II. An increase in the degree of peripheralization of fetal capillaries. Placenta 9:9–18PubMedCrossRefGoogle Scholar
  39. Jackson MR, Walsh AJ, Morrow RJ, Mullen JBM, Lye SJ, Ritchie JWK (1995) Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: relationship with umbilical artery Doppler waveforms. Am J Obstet Gynecol 172:518–525PubMedCrossRefGoogle Scholar
  40. Jauniaux E, Burton GJ (2006) Villous histomorphometry and placental bed biopsy investigation in Type I diabetic pregnancies. Placenta 27:468–474PubMedCrossRefGoogle Scholar
  41. Jirkovska M, Kubinova L, Janacek J, Moravcova M, Krejci V, Karen P (2002) Topological properties and spatial organization of villous capillaries in normal and diabetic placentas. J Vasc Res 39:268–278PubMedCrossRefGoogle Scholar
  42. Jones CJP, Fox H (1976a) Placental changes in gestational diabetes. An ultastructural study. Obstet Gynecol 48:274–280PubMedGoogle Scholar
  43. Jones CJP, Fox H (1976b) An ultrastructural and ultrahistochemical study of the placenta of the diabetic woman. J Pathol 119:91–99PubMedCrossRefGoogle Scholar
  44. Jones CJP, Fox H (1977) Syncytial knots and intervillous bridges in the human placenta: an ultrastructural study. J Anat 124:275–286PubMedGoogle Scholar
  45. Kadyrov M, Kosanke G, Kingdom J, Kaufmann P (1998) Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet 352:1747–1749PubMedCrossRefGoogle Scholar
  46. Karsdorp VH, Dirks BK, van der Linden JC, van Vugt JM, Baak JP, van Geijn HP (1996) Placenta morphology and absent or reversed end diastolic flow velocities in the umbilical artery: a clinical and morphometrical study. Placenta 17:393–399PubMedCrossRefGoogle Scholar
  47. Kaufmann P (1981) Entwicklung der Plazenta. In: Becker V, Schiebler TH, Kubli F (eds) Die Plazenta des Menschen. Thieme, Stuttgart, pp 13–50Google Scholar
  48. Kaufmann P, Luckhardt M, Schweikhart G, Cantle SJ (1987) Cross-sectional features and three-dimensional structure of human placental villi. Placenta 8:235–247PubMedCrossRefGoogle Scholar
  49. Kemnitz P, Theuring F (1974) Makroskopische, licht- und elektronenmikroskopische Plazentabefunde bei Übertragung. Zentralbl Allg Pathol 118:43–54PubMedGoogle Scholar
  50. Khong TY, De Wolf F, Robertson WB, Brosens I (1986) Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 93:1049–1059PubMedCrossRefGoogle Scholar
  51. Kingdom JCP, Kaufmann P (1997) Oxygen and placental villous development: origins of fetal hypoxia. Placenta 18:613–621PubMedCrossRefGoogle Scholar
  52. Kingdom JCP, Macara LM, Krebs C, Leiser R, Kaufmann P (1997) Pathological basis for abnormal umbilical artery waveforms in pregnancies complicated by intrauterine growth restriction. Trophoblast Res 10:291–309PubMedCrossRefGoogle Scholar
  53. Kliman HJ, Perrotta PL, Jones DC (1995) The efficacy of the placental biopsy. Am J Obstet Gynecol 173:1084–1088PubMedCrossRefGoogle Scholar
  54. Kosanke G, Kadyrov M, Korr H, Kaufmann P (1998) Maternal anemia results in increased proliferation in human placental villi. Trophoblast Res 11:339–357Google Scholar
  55. Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JCP (1996) Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 175:1534–1542PubMedCrossRefGoogle Scholar
  56. Küstermann Wv (1981) Über ‘Proliferationsknoten’ und ‘Syncytial­brücken’ der menschlichen Plazenta. Anat Anz 150:144–157PubMedGoogle Scholar
  57. Larsen LG, Clausen HV, Andersen B, Græm N (1995) A stereologic study of postmature placentas fixed by dual perfusion. Am J Obstet Gynecol 172:500–507PubMedCrossRefGoogle Scholar
  58. Las Heras J, Baskerville JC, Harding PG, Haust MD (1985) Morphometric studies of fetal placental stem arteries in hypertensive disorders (‘toxaemia’) of pregnancy. Placenta 6:217–227PubMedCrossRefGoogle Scholar
  59. Laurini RN, Visser GH, van Ballegooie E, Schoots CJ (1987) Morphological findings in placentae of insulin-dependent diabetic patients treated with continuous subcutaneous insulin infusion (CSII). Placenta 8:153–165PubMedCrossRefGoogle Scholar
  60. Macara L, Kingdom JCP, Kaufmann P, Kohnen G, Hair J, More IAR, Lyall F, Greer IA (1996) Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta 17:37–48PubMedCrossRefGoogle Scholar
  61. Mayhew TM (2002) Enhanced fetoplacental angiogenesis in pre-gestational diabetes mellitus: the extra growth is exclusively longitudinal and not accompanied by microvascular remodelling. Diabetologia 45:1434–1439PubMedCrossRefGoogle Scholar
  62. Mayhew TM, Sisley I (1998) Quantitative studies on the villi, trophoblast and intervillous pores of placentae from women with well-controlled diabetes mellitus. Placenta 19:371–377PubMedCrossRefGoogle Scholar
  63. Mayhew TM, Charnock Jones DS, Kaufmann P (2004) Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta 25:127–139PubMedCrossRefGoogle Scholar
  64. Mayhew TM, Manwani R, Ohadike C, Wijesekara J, Baker PN (2007) The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. Placenta 28:233–238PubMedCrossRefGoogle Scholar
  65. Mikolajczak J, Ruhrberg A, Fetzer M, Kaufmann P, Goecke C (1987) Irreguläre Zottenreifung bei Frühgeburtlichkeit und Übertragung, und ihre Darstellbarkeit im Ultraschall. Gynakol Rundsch 27:145–146CrossRefGoogle Scholar
  66. Moore LG (2011) Uterine blood flow as a determinant of fetoplacental development. In: Burton GJ, Barker DJP, Moffett A, Thornburg T (eds) The placenta and human developmental programming. Cambridge University Press, Cambridge, pp 126–144Google Scholar
  67. Myers RE, Fujikura T (1968) Placental changes after experimental abruptio placentae and fetal vessel ligation of rhesus monkey placenta. Am J Obstet Gynecol 100:946–951PubMedGoogle Scholar
  68. Ness RB, Sibai BM (2006) Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol 195:40–49PubMedCrossRefGoogle Scholar
  69. Nordenvall M, Ullberg U, Laurin J, Lingman G, Sandstedt B, Ulmsten U (1991) Placental morphology in relation to umbilical artery blood velocity waveforms. Eur J Obstet Gynecol Reprod Biol 40:179–190PubMedCrossRefGoogle Scholar
  70. Pardi G, Cetin I, Marconi AM, Bozzetti P, Buscaglia M, Makowski EL, Battaglia FC (1992) Venous drainage of the human uterus: respiratory gas studies in normal and fetal growth-retarded pregnancies. Am J Obstet Gynecol 166:699–706PubMedCrossRefGoogle Scholar
  71. Pilz I, Schweikhart G, Kaufmann P (1980) Zur Abgrenzung normaler, artefizieller und pathologischer Struckturen in reifen menschlichen Plazentazotten. III. Morphometrische Untersuchungen bei Rh-Inkompatibilität. Arch Gynecol Obstet 229:137–154Google Scholar
  72. Piotrowicz B, Niebroj TK, Sieron G (1969) The morphology and histochemistry of the full term placenta in anaemic patients. Folia Histochem Cytochem (Krakow) 7:435–444Google Scholar
  73. Postigo L, Heredia G, Illsley NP, Torricos T, Dolan C, Echalar L, Tellez W, Maldonado I, Brimacombe M, Balanza E, Vargas E, Zamudio S (2009) Where the O2 goes to: preservation of human fetal oxygen delivery and consumption at high altitude. J Physiol 587:693–708PubMedCrossRefGoogle Scholar
  74. Rainey A, Mayhew TM (2010) Volumes and numbers of intervillous pores and villous domains in placentas associated with intrauterine growth restriction and/or pre-eclampsia. Placenta 31:602–606PubMedCrossRefGoogle Scholar
  75. Reshetnikova OS, Burton GJ, Milovanov AP (1994) Effects of hypobaric hypoxia on the feto-placental unit; the morphometric diffusing capacity of the villous membrane at high altitude. Am J Obstet Gynecol 171:1560–1565PubMedCrossRefGoogle Scholar
  76. Reshetnikova OS, Burton GJ, Teleshova OV (1995) Placental histomorphometry and morphometric diffusing capacity of the villous membrane in pregnancies complicated by maternal iron-deficiency anemia. Am J Obstet Gynecol 173:724–727PubMedCrossRefGoogle Scholar
  77. Salvatore CA (1968) The placenta in acute toxemia. A comparative study. Am J Obstet Gynecol 102:347–353PubMedGoogle Scholar
  78. Schweikhart G, Kaufmann P, Beck T (1986) Morphology of placental villi after premature delivery and its clinical relevance. Arch Gynecol Obstet 239:101–114Google Scholar
  79. Smulian J, Shen-Schwarz S, Scorza W, Kinzler W, Vintzileos A (2004) A clinicohistopathologic comparison between HELLP syndrome and severe preeclampsia. J Matern Fetal Neonatal Med 16:287–293PubMedCrossRefGoogle Scholar
  80. Stoz F, Schuhmann RA, Schmid A (1987) Morphometric investigations of terminal villi of diabetic placentas in relation to the White classification of diabetes mellitus. J Perinat Med 15:193–198PubMedCrossRefGoogle Scholar
  81. Stoz F, Schuhmann RA, Schebesta B (1988) The development of the placental villus during normal pregnancy: morphometric data base. Arch Gynecol Obstet 244:23–32PubMedCrossRefGoogle Scholar
  82. Teasdale F (1983) Histomorphometry of the human placenta in Class B diabetes mellitus. Placenta 4:1–12PubMedCrossRefGoogle Scholar
  83. Teasdale F (1984) Idiopathic intrauterine growth retardation: histomorphometry of the human placenta. Placenta 5:83–92PubMedCrossRefGoogle Scholar
  84. Teasdale F (1985) Histomorphometry of the human placenta in maternal preeclampsia. Am J Obstet Gynecol 152:25–31PubMedGoogle Scholar
  85. Tenney B, Parker F (1940) The placenta in toxemia of pregnancy. Am J Obstet Gynecol 39:1000–1005Google Scholar
  86. Tissot van Patot MC, Valdez M, Becky V, Cindrova-Davies T, Johns J, Zwerdling L, Jauniaux E, Burton GJ (2009) Impact of pregnancy at high altitude on placental morphology in non-native women with and without preeclampsia. Placenta 30:523–528CrossRefGoogle Scholar
  87. Tissot van Patot MC, Murray AJ, Beckey V, Cindrova-Davies T, Johns J, Zwerdlinger L, Jauniaux E, Burton GJ, Serkova NJ (2010) Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. Am J Physiol Regul Integr Comp Physiol 298:R166–R172PubMedCrossRefGoogle Scholar
  88. Todros T, Sciarrone A, Piccoli E, Guiot C, Kaufmann P, Kingdom J (1999) Umbilical Doppler waveforms and placental villous angiogenesis in pregnancies complicated by fetal growth restriction. Obstet Gynecol 93:499–503PubMedCrossRefGoogle Scholar
  89. Vinnars MT, Wijnaendts LC, Westgren M, Bolte AC, Papadogiannakis N, Nasiell J (2008) Severe preeclampsia with and without HELLP differ with regard to placental pathology. Hypertension 51:1295–1299PubMedCrossRefGoogle Scholar
  90. Vogel M (1986) Histologische Entwicklungsstadien der Chorionzotten in der Embryonal- und der frühen Fetalperiode (5. bis 20. SSW). Pathologe 7:59–61PubMedGoogle Scholar
  91. Vogel M (1996) Atlas der morphologischen Plazentadiagnostik, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  92. Wentworth D (1967) The placenta in cases of hemolytic disease of the newborn. Am J Obstet Gynecol 98:283–289PubMedGoogle Scholar
  93. Werner C, Göbel U, Kramartz N, Werners P, Haering M (1973) Plazentareifungsstörungen und Schweregrad des Morbus haemolyticus neonatorum. Geburtshilfe Frauenheilkd 33:776–785PubMedGoogle Scholar
  94. Yung HW, Calabrese S, Hynx D, Hemmings BA, Cetin I, Charnock-Jones DS, Burton GJ (2008) Evidence of placental translation inhibition and endoplasmic reticulum stress in the etiology of human intrauterine growth restriction. Am J Pathol 173:451–462PubMedCrossRefGoogle Scholar
  95. Zamudio S (2003) The placenta at high altitude. High Alt Med Biol 4:171–191PubMedCrossRefGoogle Scholar
  96. Zamudio S, Kovalenko O, Vanderlelie J, Illsley NP, Heller D, Belliappa S, Perkins AV (2007) Chronic hypoxia in vivo reduces placental oxidative stress. Placenta 28:846–853PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kurt Benirschke
    • 1
  • Graham J. Burton
    • 2
  • Rebecca N. Baergen
    • 3
  1. 1.La JollaUSA
  2. 2.Physiological LaboratoryUniversity of Cambridge Centre for Trophoblast ResearchCambridgeUK
  3. 3.Department of Pathology and Laboratory Medicine New York-Presbyterian HospitalWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations