C0 Interior Penalty Methods

  • Susanne C. BrennerEmail author
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 85)


C 0 interior penalty methods are discontinuous Galerkin methods for fourth order problems. In this article we discuss various aspects of such methods including a priori error analysis, a posteriori error analysis and fast solution techniques.


Model Problem Posteriori Error Element Space Multigrid Method Discontinuous Galerkin Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank the National Science Foundation for supporting her research on C 0 interior penalty methods through the grants DMS-03-11790, DMS-07-13835 and DMS-10-16332. She would also like to thank Shiyuan Gu, Thirupathi Gudi, Li-yeng Sung and Kening Wang for helpful comments. This article was completed during the author’s visit at the Institute for Mathematics and its Applications, which was supported by funds provided by the National Science Foundation.


  1. 1.
    R.A. Adams and J.J.F. Fournier. Sobolev Spaces (Second Edition). Academic Press, Amsterdam, 2003.Google Scholar
  2. 2.
    S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math., 12:623–727, 1959.Google Scholar
  3. 3.
    M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York, 2000.CrossRefzbMATHGoogle Scholar
  4. 4.
    P.F. Antonietti and B. Ayuso. Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. M2AN Math. Model. Numer. Anal., 41:21–54, 2007.Google Scholar
  5. 5.
    P.F. Antonietti and B. Ayuso. Two-level Schwarz preconditioners for super penalty discontinuous Galerkin methods. Commun. Comput. Phys., 5:398–412, 2009.MathSciNetGoogle Scholar
  6. 6.
    J.H. Argyris, I. Fried, and D.W. Scharpf. The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc., 72:701–709, 1968.Google Scholar
  7. 7.
    D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749–1779, 2001/02.Google Scholar
  8. 8.
    I. Babuška. The finite element method with Lagrange multipliers. Numer. Math., 20:179–192, 1973.CrossRefzbMATHGoogle Scholar
  9. 9.
    C. Bacuta, J.H. Bramble, and J.E. Pasciak. Shift theorems for the biharmonic Dirichlet problem. In Recent Progress in Computational and Applied PDEs, pages 1–26. Kluwer/Plenum, New York, 2002.Google Scholar
  10. 10.
    G. Baker. Finite element methods for elliptic equations using nonconforming elements. Math. Comp., 31:45–89, 1977.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Barker, S.C. Brenner, E.-H. Park, and L.-Y. Sung. Two-level additive Schwarz preconditioners for a weakly over-penalized symmetric interior penalty method. J. Sci. Comput., 47:27–49, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    G.P. Bazeley, Y.K. Cheung, B.M. Irons, and O.C. Zienkiewicz. Triangular elements in bending - conforming and nonconforming solutions. In Proceedings of the Conference on Matrix Methods in Structural Mechanics. Wright Patterson A.F.B., Ohio, 1965.Google Scholar
  13. 13.
    C. Bernardi. Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal., 26:1212–1240, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    P. Bjørstad and J. Mandel. On the spectra of sums of orthogonal projections with applications to parallel computing. BIT, 31:76–88, 1991.CrossRefMathSciNetGoogle Scholar
  15. 15.
    H. Blum and R. Rannacher. On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci., 2:556–581, 1980.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    A. Bonito and R.H. Nochetto. Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal., 48:734–771, 2010.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    J.H. Bramble. Multigrid Methods. Longman Scientific & Technical, Essex, 1993.zbMATHGoogle Scholar
  18. 18.
    J.H. Bramble and S.R. Hilbert. Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal., 7:113–124, 1970.CrossRefMathSciNetGoogle Scholar
  19. 19.
    J.H. Bramble and J. Xu. Some estimates for a weighted L 2 projection. Math. Comp., 56:463–476, 1991.zbMATHMathSciNetGoogle Scholar
  20. 20.
    J.H. Bramble and X. Zhang. Multigrid methods for the biharmonic problem discretized by conforming C 1 finite elements on nonnested meshes. SIAM J. Numer. Anal., 33:555–570, 1996.CrossRefMathSciNetGoogle Scholar
  21. 21.
    J.H. Bramble and X. Zhang. The Analysis of Multigrid Methods. In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, VII, pages 173–415. North-Holland, Amsterdam, 2000.Google Scholar
  22. 22.
    S.C. Brenner. An optimal-order nonconforming multigrid method for the biharmonic equation. SIAM J. Numer. Anal., 26:1124–1138, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    S.C. Brenner. Two-level additive Schwarz preconditioners for nonconforming finite elements. In D.E. Keyes and J. Xu, editors, Domain Decomposition Methods in Scientific and Engineering Computing, pages 9–14. Amer. Math. Soc., Providence, 1994. Contemporary Mathematics 180.Google Scholar
  24. 24.
    S.C. Brenner. Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comp., 65:897–921, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    S.C. Brenner. Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comp., 68:25–53, 1999.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    S.C. Brenner. Convergence of the multigrid V-cycle algorithm for second order boundary value problems without full elliptic regularity. Math. Comp., 71:507–525, 2002.CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    S.C. Brenner. Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for second order elliptic boundary value problems. Math. Comp., 73:1041–1066 (electronic), 2004.Google Scholar
  28. 28.
    S.C. Brenner, S. Gu, T. Gudi, and L.-Y. Sung. A C 0 interior penalty method for a biharmonic problem with essential and natural boundary conditions of Cahn-Hilliard type. preprint, 2010.Google Scholar
  29. 29.
    S.C. Brenner, T. Gudi, and L.-Y. Sung. An a posteriori error estimator for a quadratic C 0 interior penalty method for the biharmonic problem. IMA J. Numer. Anal., 30:777–798, 2010.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    S.C. Brenner and M. Neilan. A C 0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal., 49:869–892, 2011.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    S.C. Brenner, M. Neilan, and L.-Y. Sung. Isoparametric C 0 interior penalty methods for plate bending problems on smooth domains. preprint, 2011.Google Scholar
  32. 32.
    S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods (Third Edition). Springer-Verlag, New York, 2008.CrossRefGoogle Scholar
  33. 33.
    S.C. Brenner and L.-Y. Sung. Lower bounds for two-level additive Schwarz preconditioners for nonconforming finite elements. In Z. Chen et al., editor, Advances in Computational Mathematics, Lecture Notes in Pure and Applied Mathematics 202 , pages 585–604. Marcel Dekker, New York, 1998.Google Scholar
  34. 34.
    S.C. Brenner and L.-Y. Sung. C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput., 22/23:83–118, 2005.Google Scholar
  35. 35.
    S.C. Brenner and L.-Y. Sung. Multigrid algorithms for C 0 interior penalty methods. SIAM J. Numer. Anal., 44:199–223, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    S.C. Brenner, L.-Y. Sung, and Y. Zhang. Finite element methods for the displacement obstacle problem of clamped plates. Math. Comp., (to appear).Google Scholar
  37. 37.
    S.C. Brenner and K. Wang. Two-level additive Schwarz preconditioners for C 0 interior penalty methods. Numer. Math., 102:231–255, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    S.C. Brenner and K. Wang. An iterative substructuring algorithm for a C 0 interior penalty method. preprint, 2011.Google Scholar
  39. 39.
    S.C. Brenner, K. Wang, and J. Zhao. Poincaré-Friedrichs inequalities for piecewise H 2 functions. Numer. Funct. Anal. Optim., 25:463–478, 2004.CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    S.C. Brenner and J. Zhao. Convergence of multigrid algorithms for interior penalty methods. Appl. Numer. Anal. Comput. Math., 2:3–18, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numér., 8:129–151, 1974.MathSciNetGoogle Scholar
  42. 42.
    F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York-Berlin-Heidelberg, 1991.CrossRefzbMATHGoogle Scholar
  43. 43.
    P.G. Ciarlet. Sur l’élément de Clough et Tocher. RAIRO Anal. Numér., 8:19–27, 1974.MathSciNetGoogle Scholar
  44. 44.
    P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.zbMATHGoogle Scholar
  45. 45.
    P.G. Ciarlet and P.-A. Raviart. A mixed finite element method for the biharmonic equation. In Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), pages 125–145. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974.Google Scholar
  46. 46.
    M. Dauge. Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341. Springer-Verlag, Berlin-Heidelberg, 1988.Google Scholar
  47. 47.
    W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal., 33:1106–1124, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    M. Dryja, J. Galvis, and M. Sarkis. BDDC methods for discontinuous Galerkin discretization of elliptic problems. J. Complexity, 23:715–739, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    M. Dryja and O.B. Widlund. An additive variant of the Schwarz alternating method in the case of many subregions. Technical Report 339, Department of Computer Science, Courant Institute, 1987.Google Scholar
  50. 50.
    M. Dryja and O.B. Widlund. Domain decomposition algorithms with small overlap. SIAM J. Sci. Comput., 15:604–620, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    T. Dupont and R. Scott. Polynomial approximation of functions in Sobolev spaces. Math. Comp., 34:441–463, 1980.CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei, and R.L. Taylor. Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg., 191:3669–3750, 2002.CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    X. Feng and O.A. Karakashian. Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal., 39:1343–1365, 2001.CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    X. Feng and O.A. Karakashian. Two-level non-overlapping Schwarz preconditioners for a discontinuous Galerkin approximation of the biharmonic equation. J. Sci. Comput., 22/23:289–314, 2005.Google Scholar
  55. 55.
    G.H. Golub and C.F. Van Loan. Matrix Computations (third edition). The Johns Hopkins University Press, Baltimore, 1996.Google Scholar
  56. 56.
    M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math., 70:163–180, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    P. Grisvard. Elliptic Problems in Non Smooth Domains. Pitman, Boston, 1985.Google Scholar
  58. 58.
    T. Gudi. A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp., 79:2169–2189, 2010.CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    W. Hackbusch. Multi-grid Methods and Applications. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.zbMATHGoogle Scholar
  60. 60.
    R.H.W. Hoppe, G. Kanschat, and T. Warburton. Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal., 47:534–550, 2008/09.Google Scholar
  61. 61.
    C. Johnson. On the convergence of a mixed finite-element method for plate bending problems. Numer. Math., 21:43–62, 1973.CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    O.A. Karakashian and F. Pascal. Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal., 45:641–665, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    V. Kondratiev. Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc., pages 227–313, 1967.Google Scholar
  64. 64.
    V.A. Kozlov, V.G. Maz’ya, and J. Rossmann. Elliptic Boundary Value Problems in Domains with Point Singularities. AMS, Providence, 1997.Google Scholar
  65. 65.
    S.G. Kreĭn, Ju.I. Petunin, and E.M. Semenov. Interpolation of Linear Operators. In Translations of Mathematical Monographs 54. American Mathematical Society, Providence, 1982.Google Scholar
  66. 66.
    C. Lasser and A. Toselli. An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems. Math. Comp., 72:1215–1238, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    M. Lenoir. Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal., 23:562–580, 1986.CrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    S. Li and K. Wang. Condition number estimates for C 0 interior penalty methods. In Domain decomposition methods in science and engineering XVI, volume 55 of Lect. Notes Comput. Sci. Eng., pages 675–682. Springer, Berlin, 2007.Google Scholar
  69. 69.
    J. Mandel, S. McCormick, and R. Bank. Variational Multigrid Theory. In S. McCormick, editor, Multigrid Methods, Frontiers In Applied Mathematics 3, pages 131–177. SIAM, Philadelphia, 1987.Google Scholar
  70. 70.
    T.P.A. Mathew. Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer-Verlag, Berlin, 2008.CrossRefzbMATHGoogle Scholar
  71. 71.
    T. Miyoshi. A finite element method for the solutions of fourth order partial differential equations. Kumamoto J. Sci. (Math.), 9:87–116, 1972/73.Google Scholar
  72. 72.
    L. Molari, G. N. Wells, K. Garikipati, and F. Ubertini. A discontinuous Galerkin method for strain gradient-dependent damage: study of interpolations and convergence. Comput. Methods Appl. Mech. Engrg., 195:1480–1498, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  73. 73.
    P. Morin, R.H. Nochetto, and K.G. Siebert. Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal., 38:466–488, 2000.CrossRefzbMATHMathSciNetGoogle Scholar
  74. 74.
    L.S.D. Morley. The triangular equilibrium problem in the solution of plate bending problems. Aero. Quart., 19:149–169, 1968.Google Scholar
  75. 75.
    I. Mozolevski and E. Süli. A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math., 3:596–607 (electronic), 2003.Google Scholar
  76. 76.
    I. Mozolevski, E. Süli, and P.R. Bösing. hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput., 30:465–491, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  77. 77.
    S.A. Nazarov and B.A. Plamenevsky. Elliptic Problems in Domains with Piecewise Smooth Boundaries. de Gruyter, Berlin-New York, 1994.Google Scholar
  78. 78.
    S. Nepomnyaschikh. On the application of the bordering method to the mixed boundary value problem for elliptic equations and on mesh norms in W 2 1 ∕ 2(S). Sov. J. Numer. Anal. Math. Modelling, 4:493–506, 1989.CrossRefMathSciNetGoogle Scholar
  79. 79.
    J. Nečas. Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris, 1967.zbMATHGoogle Scholar
  80. 80.
    P. Peisker. A multilevel algorithm for the biharmonic problem. Numer. Math., 46:623–634, 1985.CrossRefzbMATHMathSciNetGoogle Scholar
  81. 81.
    B. Rivière. Discontinuous Galerkin methods for solving elliptic and parabolic equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.Google Scholar
  82. 82.
    W. Rudin. Functional Analysis (Second Edition). McGraw-Hill, New York, 1991.Google Scholar
  83. 83.
    Z. Shi. On the convergence of the incomplete biquadratic nonconforming plate element. Math. Numer. Sinica, 8:53–62, 1986.zbMATHMathSciNetGoogle Scholar
  84. 84.
    Z. Shi. Error estimates of Morley element. Chinese J. Numer. Math. & Appl., 12:9–15, 1990.MathSciNetGoogle Scholar
  85. 85.
    Z. Shi and Z. Xie. Multigrid methods for Morley element on nonnested meshes. J. Comput. Math., 16:385–394, 1998.zbMATHMathSciNetGoogle Scholar
  86. 86.
    B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Cambridge University Press, Cambridge, 1996.zbMATHGoogle Scholar
  87. 87.
    E. Süli and I. Mozolevski. hp-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Engrg., 196:1851–1863, 2007.CrossRefzbMATHMathSciNetGoogle Scholar
  88. 88.
    L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin, 2007.zbMATHGoogle Scholar
  89. 89.
    A. Toselli and O.B. Widlund. Domain Decomposition Methods - Algorithms and Theory. Springer, New York, 2005.zbMATHGoogle Scholar
  90. 90.
    H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978.Google Scholar
  91. 91.
    U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, San Diego, 2001.zbMATHGoogle Scholar
  92. 92.
    R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. In Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), volume 50, pages 67–83, 1994.Google Scholar
  93. 93.
    R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, 1995.Google Scholar
  94. 94.
    G.N. Wells, K. Garikipati, and L. Molari. A discontinuous Galerkin formulation for a strain gradient-dependent damage model. Comput. Methods Appl. Mech. Engrg., 193:3633–3645, 2004.CrossRefzbMATHGoogle Scholar
  95. 95.
    G.N. Wells, E. Kuhl, and K. Garikipati. A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys., 218:860–877, 2006.CrossRefzbMATHMathSciNetGoogle Scholar
  96. 96.
    J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34:581–613, 1992.CrossRefzbMATHMathSciNetGoogle Scholar
  97. 97.
    A. Ženíšek. Interpolation polynomials on the triangle. Numer. Math., 15:283–296, 1970.CrossRefzbMATHMathSciNetGoogle Scholar
  98. 98.
    S. Zhang. An optimal order multigrid method for biharmonic, C 1 finite element equations. Numer. Math., 56:613–624, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  99. 99.
    X. Zhang. Studies in Domain Decomposition: Multilevel Methods and the Biharmonic Dirichlet Problem. PhD thesis, Courant Institute, 1991.Google Scholar
  100. 100.
    J. Zhao. Convergence of nonconforming V -cycle and F-cycle methods for the biharmonic problem using the Morley element. Electron. Trans. Numer. Anal., 17:112–132, 2004.zbMATHMathSciNetGoogle Scholar
  101. 101.
    J. Zhao. Convergence of V- and F-cycle multigrid methods for the biharmonic problem using the Hsieh-Clough-Tocher element. Numer. Methods Partial Differential Equations, 21:451–471, 2005.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Center for Computation & TechnologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations