Some Remarks on Eigenvalue Approximation by Finite Elements
Chapter
First Online:
Abstract
The aim of this paper is to supplement the results of Boffi (Acta Numer. 19:1–120, 2010) with some additional remarks. In particular we deal with three distinct topics: we review some tutorial examples in one dimension and provide numerical codes for them; we analyze the case of multiple eigenvalues and show some numerical; we review a posteriori error analysis for eigenvalue problems.
Keywords
Eigenvalue Problem Posteriori Error Posteriori Error Estimate Error Indicator Multiple Eigenvalue
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000.Google Scholar
- 2.A. Alonso. Error estimators for a mixed method. Numer. Math., 74(4):385–395, 1996.MATHMathSciNetCrossRefGoogle Scholar
- 3.A. Alonso, A. Dello Russo, C. Otero-Souto, C. Padra, and R. Rodríguez. An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids. Comput. Vis. Sci., 4(2):67–78, 2001. Second AMIF International Conference (Il Ciocco, 2000).Google Scholar
- 4.A. Alonso, A. Dello Russo, C. Padra, and R. Rodríguez. A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems. Adv. Comput. Math., 15(1-4):25–59 (2002), 2001. A posteriori error estimation and adaptive computational methods.Google Scholar
- 5.A. Alonso, A. Dello Russo, and V. Vampa. A posteriori error estimates in finite element solution of structure vibration problems with applications to acoustical fluid-structure analysis. Comput. Mech., 23(3):231–239, 1999.MATHMathSciNetCrossRefGoogle Scholar
- 6.A. Alonso, A. Dello Russo, and V. Vampa. A posteriori error estimates in finite element acoustic analysis. J. Comput. Appl. Math., 117(2):105–119, 2000.MATHMathSciNetCrossRefGoogle Scholar
- 7.C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potential in three-dimensional nonsmooth domains. Math Methods Appl. Sci., 21(9):823–864, 1998.MATHMathSciNetCrossRefGoogle Scholar
- 8.P. M. Anselone. Collectively compact operator approximation theory and applications to integral equations. Prentice-Hall Inc., Englewood Cliffs, N. J., 1971. With an appendix by Joel Davis, Prentice-Hall Series in Automatic Computation.Google Scholar
- 9.M. G. Armentano and C. Padra. A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math., 58(5):593–601, 2008.MATHMathSciNetCrossRefGoogle Scholar
- 10.D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.), 47(2):281–354, 2010.Google Scholar
- 11.I. Babuška and R. Narasimhan. The Babuška-Brezzi condition and the patch test: an example. Comput. Methods Appl. Mech. Engrg., 140(1-2):183–199, 1997.MATHMathSciNetCrossRefGoogle Scholar
- 12.I. Babuška and J. Osborn. Eigenvalue problems. In Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, pages 641–787. North-Holland, Amsterdam, 1991.Google Scholar
- 13.I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the finite element method. Int. J. Numer. Meth. Eng., 12:1597–1615, 1978.MATHCrossRefGoogle Scholar
- 14.I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal., 15(4):736–754, 1978.MATHMathSciNetCrossRefGoogle Scholar
- 15.R. E. Bank. The efficient implementation of local mesh refinement algorithms. In Adaptive computational methods for partial differential equations (College Park, Md., 1983), pages 74–81. SIAM, Philadelphia, PA, 1983.Google Scholar
- 16.R. E. Bank. PLTMG: a software package for solving elliptic partial differential equations. Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Users’ guide 8.0.Google Scholar
- 17.R. E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data structures for regular local mesh refinement. In Scientific computing (Montreal, Que., 1982), IMACS Trans. Sci. Comput., I, pages 3–17. IMACS, New Brunswick, NJ, 1983.Google Scholar
- 18.K.-J. Bathe, C. Nitikitpaiboon, and X. Wang. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Comput. & Structures, 56(2-3):225–237, 1995.MATHMathSciNetCrossRefGoogle Scholar
- 19.A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodríguez, and J. Solomin. Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal., 32(4):1280–1295, 1995.MATHMathSciNetCrossRefGoogle Scholar
- 20.A. Bermúdez and D. G. Pedreira. Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides. Numer. Math., 61(1):39–57, 1992.MATHMathSciNetCrossRefGoogle Scholar
- 21.D. Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1–120, 2010.MathSciNetCrossRefGoogle Scholar
- 22.D. Boffi, F. Brezzi, and L. Gastaldi. On the convergence of eigenvalues for mixed formulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(1-2):131–154 (1998), 1997. Dedicated to Ennio De Giorgi.Google Scholar
- 23.D. Boffi, F. Brezzi, and L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp., 69(229):121–140, 2000.MATHMathSciNetCrossRefGoogle Scholar
- 24.D. Boffi, C. Chinosi, and L. Gastaldi. Approximation of the grad div operator in nonconvex domains. CMES Comput. Model. Eng. Sci., 1(2):31–43, 2000.MathSciNetGoogle Scholar
- 25.D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal., 36(4):1264–1290 (electronic), 1999.Google Scholar
- 26.D. Boffi and C. Lovadina. Remarks on augmented Lagrangian formulations for mixed finite element schemes. Boll. Un. Mat. Ital. A (7), 11(1):41–55, 1997.Google Scholar
- 27.A. Bossavit. Solving Maxwell equations in a closed cavity and the question of spurious modes. IEEE Trans. on Magnetics, 26:702–705, 1990.CrossRefGoogle Scholar
- 28.J. H. Bramble, J. E. Pasciak, and A. V. Knyazev. A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Adv. Comput. Math., 6(2):159–189 (1997), 1996.Google Scholar
- 29.F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.Google Scholar
- 30.C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods. Scientific Computation. Springer-Verlag, Berlin, 2006. Fundamentals in single domains.Google Scholar
- 31.C. Carstensen. A posteriori error estimate for the mixed finite element method. Math. Comp., 66(218):465–476, 1997.MATHMathSciNetCrossRefGoogle Scholar
- 32.C. Carstensen and J. Gedicke. An oscillation-free adaptive FEM for symmetric eigenvalue problems. Technical report, DFG Research Center MATHEON, Berlin, 2008.Google Scholar
- 33.C. Carstensen and R. Verfürth. Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal., 36(5):1571–1587, 1999.MATHMathSciNetCrossRefGoogle Scholar
- 34.H. Chen and R. Taylor. Vibration analysis of fluid-solid systems using a finite element displacement formulation. Int. J. Numer. Methods Eng., 29:683–698, 1990.MATHCrossRefGoogle Scholar
- 35.P. G. Ciarlet. The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 4.Google Scholar
- 36.P. Clément. Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9(R-2):77–84, 1975.Google Scholar
- 37.M. Costabel and M. Dauge. Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal., 151(3):221–276, 2000.MATHMathSciNetCrossRefGoogle Scholar
- 38.X. Dai, J. Xu, and A. Zhou. Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math., 110(3):313–355, 2008.MATHMathSciNetCrossRefGoogle Scholar
- 39.M. Dauge. Benchmark computations for Maxwell equations for the approximation of highly singular solutions. http://perso.univ-rennes1.fr/monique.dauge/benchmax.html.
- 40.R. Durán, L. Gastaldi, and C. Padra. A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci., 9(8):1165–1178, 1999.MATHMathSciNetCrossRefGoogle Scholar
- 41.R. Durán, C. Padra, and R. Rodríguez. A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci., 13(8):1219–1229, 2003.MATHMathSciNetCrossRefGoogle Scholar
- 42.E M. Garau and P. Morin. Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. Cuad. Mat. Mec., page 30, 2009.Google Scholar
- 43.E. M. Garau, P. Morin, and C. Zuppa. Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci., 19(5):721–747, 2009.MATHMathSciNetCrossRefGoogle Scholar
- 44.F. Gardini. A posteriori error estimates for an eigenvalue problem arising from fluid-structure interaction. Istit. Lombardo Accad. Sci. Lett. Rend. A, 138:17–34 (2005), 2004.Google Scholar
- 45.F. Gardini. A posteriori error estimates for eigenvalue problems in mixed form. PhD thesis, Università degli Studi di Pavia, 2005.Google Scholar
- 46.F. Gardini. Mixed approximation of eigenvalue problems: a superconvergence result. M2AN Math. Model. Numer. Anal., 43(5):853–865, 2009.Google Scholar
- 47.L. Gastaldi. Mixed finite element methods in fluid structure systems. Numer. Math., 74(2):153–176, 1996.MATHMathSciNetCrossRefGoogle Scholar
- 48.S. Giani and I. G. Graham. A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal., 47(2):1067–1091, 2009.MATHMathSciNetCrossRefGoogle Scholar
- 49.L. Grubišić and J. S. Ovall. On estimators for eigenvalue/eigenvector approximations. Math. Comp., 78(266):739–770, 2009.MATHMathSciNetGoogle Scholar
- 50.F. Hecht. FreeFem++, Third Edition, Version 3.12, 2011. http://www.freefem.org/ff++/.
- 51.V. Heuveline and R. Rannacher. A posteriori error control for finite approximations of elliptic eigenvalue problems. Adv. Comput. Math., 15(1-4):107–138 (2002), 2001.Google Scholar
- 52.R. Hiptmair. Finite elements in computational electromagnetism. Acta Numerica, 11:237–339, 2002.MATHMathSciNetCrossRefGoogle Scholar
- 53.T. Kato. Perturbation theory for linear operators. Springer-Verlag, New York, 1976.MATHCrossRefGoogle Scholar
- 54.F. Kikuchi. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Engrg., 64:509–521, 1987.MATHMathSciNetCrossRefGoogle Scholar
- 55.A. V. Knyazev. Sharp a priori error estimates of the rayleigh-ritz method without assumptions of fixed sign or compactness. Math. Notes, 38:998–1002, 1986.Google Scholar
- 56.A. V. Knyazev. New estimates for Ritz vectors. Math. Comp., 66(219):985–995, 1997.MATHMathSciNetCrossRefGoogle Scholar
- 57.A. V. Knyazev and J. E. Osborn. New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal., 43(6):2647–2667 (electronic), 2006.Google Scholar
- 58.W. G. Kolata. Approximation in variationally posed eigenvalue problems. Numer. Math., 29(2):159–171, 1978.MATHMathSciNetCrossRefGoogle Scholar
- 59.I. Kossaczký. A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math., 55(3):275–288, 1994.MATHMathSciNetCrossRefGoogle Scholar
- 60.M. G. Larson. A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal., 38(2):608–625 (electronic), 2000.Google Scholar
- 61.C. Lovadina, M. Lyly, and R. Stenberg. A posteriori estimates for the Stokes eigenvalue problem. Numer. Methods Partial Differential Equations, 25(1):244–257, 2009.MATHMathSciNetCrossRefGoogle Scholar
- 62.D. Mao, L. Shen, and A. Zhou. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math., 25(1-3):135–160, 2006.MATHMathSciNetCrossRefGoogle Scholar
- 63.P. Monk. Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.MATHCrossRefGoogle Scholar
- 64.J. E. Pasciak and J. Zhao. Overlapping Schwarz methods in H(curl) on polyhedral domains. J. Numer. Math., 10(3):221–234, 2002.MATHMathSciNetCrossRefGoogle Scholar
- 65.P.-A. Raviart and J.-M. Thomas. A mixed finite element method for second order elliptic problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects of the Finite Element Method, volume 606 of Lecture Notes in Math., pages 292–315, New York, 1977. Springer-Verlag.Google Scholar
- 66.W. C. Rheinboldt. On a theory of mesh-refinement processes. SIAM J. Numer. Anal., 17(6):766–778, 1980.MATHMathSciNetCrossRefGoogle Scholar
- 67.M.-C. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Internat. J. Numer. Methods Engrg., 20(4):745–756, 1984.MATHMathSciNetCrossRefGoogle Scholar
- 68.M.-C. Rivara. Design and data structure of fully adaptive, multigrid, finite-element software. ACM Trans. Math. Software, 10(3):242–264, 1984.MATHMathSciNetCrossRefGoogle Scholar
- 69.G. Valle. Problemi agli autovalori per equazioni alle derivate parziali: autovalori multipli. Tesi di laurea, Università degli Studi di Pavia, 2011.Google Scholar
- 70.R. Verfürth. A posteriori error estimates for nonlinear problems. Math. Comp., 62(206):445–475, 1994.MATHMathSciNetCrossRefGoogle Scholar
- 71.R. Verfürth. A Review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley and Teubner, 1996.Google Scholar
- 72.T. F. Walsh, G. M. Reese, and U. L. Hetmaniuk. Explicit a posteriori error estimates for eigenvalue analysis of heterogeneous elastic structures. Comput. Methods Appl. Mech. Engrg., 196(37-40):3614–3623, 2007.MATHMathSciNetCrossRefGoogle Scholar
- 73.X. Wang and K.-J. Bathe. On mixed elements for acoustic fluid-structure interactions. Math. Models Methods Appl. Sci., 7(3):329–343, 1997.MATHMathSciNetCrossRefGoogle Scholar
- 74.J. Webb. Edge elements and what they can do for you. IEEE Trans. on Magnetics, 29:1460–1465, 1993.CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011