From Hadrons to Quarks

  • Helmut Satz
Part of the Lecture Notes in Physics book series (LNP, volume 841)


In this chapter, we look at some simple models to illustrate how a phase transition from hadronic matter to a quark-gluon plasma can occur. First we determine when hadrons start forming clusters which can be considered as quark matter. After considering the thermodynamics of an ideal hadron gas and of an ideal quark-gluon medium, we introduce bag pressure and baryon repulsion as interaction features to specify under which conditions strongly interacting matter prefers to consist of hadrons and when it wants to turn into a plasma of unbound quarks and gluons. Finally we show that also a simple string model yields localized hadrons at low density, while at high density color charges can move around freely by changing partners. In all cases, very basic physical notions are found to lead to a two-phase structure of matter.


Partition Function Nuclear Matter Quark Matter Hadronic Matter Massless Quark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Celik, T., Karsch, F., Satz, H.: Phys. Lett. B 97, 128 (1980) ADSCrossRefGoogle Scholar
  2. 2.
    Isichenko, M.S.: Rev. Mod. Phys. 64, 961 (1992) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Cleymans, J., Gavai, R.V., Suhonen, E.: Phys. Rep. 130, 217 (1986) ADSCrossRefGoogle Scholar
  4. 4.
    Hut, P.: Nucl. Phys. A 418, 301c (1984) ADSCrossRefGoogle Scholar
  5. 5.
    Lee, T.D.: In: Satz, H. (ed.) Statistical Mechanics of Quarks and Hadrons. North-Holland, Amsterdam (1981) Google Scholar
  6. 6.
    Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: Phys. Rev. D 9, 3471 (1974) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Johnson, K.: In: Satz, H. (ed.) Statistical Mechanics of Quarks and Hadrons. North-Holland, Amsterdam (1981) Google Scholar
  8. 8.
    Baacke, J.: Acta Phys. Pol. A 8, 625 (1977) Google Scholar
  9. 9.
    Collins, J.C., Perry, M.J.: Phys. Rev. Lett. 34, 1353 (1975) ADSCrossRefGoogle Scholar
  10. 10.
    Freedman, B.A., McLerran, L.D.: Phys. Rev. 16, 1169 (1977) ADSGoogle Scholar
  11. 11.
    Cleymans, J., Redlich, K., Satz, H., Suhonen, E.: Z. Phys. C 33, 151 (1986) ADSCrossRefGoogle Scholar
  12. 12.
    Onoda, G.Y., Liniger, E.G.: Phys. Rev. Lett. 22, 2727 (1990) ADSCrossRefGoogle Scholar
  13. 13.
    Rischke, D., et al.: Z. Phys. C 51, 485 (1991) CrossRefGoogle Scholar
  14. 14.
    Eichten, E., Gottfried, K., Kinoshita, T., Kogut, J., Lane, K.D., Yan, T.-M.: Phys. Rev. Lett. 34, 369 (1975) ADSCrossRefGoogle Scholar
  15. 15.
    Miyazawa, H.: Phys. Rev. D 20, 2953 (1979) ADSCrossRefGoogle Scholar
  16. 16.
    Goloviznin, V., Satz, H.: Yad. Fiz. 60, 523 (1997) [Phys. At. Nucl. 60, 449 (1997)] Google Scholar
  17. 17.
    Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987) zbMATHGoogle Scholar
  18. 18.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Academic Press, New York (1965) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Helmut Satz
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations