The Analysis of Dense Matter

  • Helmut Satz
Part of the Lecture Notes in Physics book series (LNP, volume 841)


What is matter made of? The search for its ultimate constituents has always inspired the imagination. Since antiquity, man has tried to explain the composite macroscopic world in terms of indivisible building blocks on a microscopic scale. Beneath the complexity and irregularity which surround us, we hope to find a hidden world of greater simplicity, in which primordial parts move according to basic laws. This idea turned out to be fruitful beyond all expectations, so that today we find it natural to derive the properties of matter from the dynamics which govern the interaction between some fundamental building blocks.


Dense Matter Quark Matter Baryon Density Brookhaven National Laboratory Color Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilczek, F.: In: Zerwas, P.M., Kastrup, H.A. (eds.) QCD—20 Years Later. World Scientific, Singapore (1993) Google Scholar
  2. 2.
    Gell-Mann, M.: Phys. Lett. 8, 214 (1964) ADSCrossRefGoogle Scholar
  3. 3.
    Zweig, G.: Int. J. Mod. Phys. A 25, 3863 (2010) and earlier references given there MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Pati, J.C., Salam, A.: Phys. Rev. D 10, 275 (1974) ADSCrossRefGoogle Scholar
  5. 5.
    Buchmüller, W.: In: Mitter, H. Plessas, W. (eds.) Nucleon-Nucleon and Nucleon-Antinucleon Interactions. Springer, Wien (1985) Google Scholar
  6. 6.
    Finkelstein, R.J.: Int. J. Mod. Phys. A 22, 4467 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Weinberg, S.: Rev. Mod. Phys. 52, 515 (1980) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Salam, A.: Rev. Mod. Phys. 52, 525 (1980) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Glashow, S.: Rev. Mod. Phys. 52, 529 (1980) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Kane, G.: Modern Elementary Particle Physics. Addison-Wesley, Reading (1993) Google Scholar
  11. 11.
    Pomeranchuk, I.Ya.: Dokl. Akad. Nauk SSSR 78, 889 (1951) Google Scholar
  12. 12.
    Mott, N.F.: Proc. Phys. Soc. (Lond.) A 62, 416 (1949) ADSCrossRefGoogle Scholar
  13. 13.
    Dixit, V.V.: Mod. Phys. Lett. A 5, 227 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    Satz, H.: Nucl. Phys. A 418, 447c (1984) ADSCrossRefGoogle Scholar
  15. 15.
    Castorina, P., Gavai, R.V., Satz, H., Eur. Phys. J. C 69, 169 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Anselmino, M., Ekelin, S., Lichtenberg, D.B., Predazzi, E.: Rev. Mod. Phys. 65, 1199 (1993) ADSCrossRefGoogle Scholar
  17. 17.
    Rajagopal, K., Wilczek, F.: The condensed matter physics of QCD. hep-ph/0011333
  18. 18.
    Alford, M.: Annu. Rev. Nucl. Part. Sci. 51, 131 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    Alford, M., et al.: Rev. Mod. Phys. 80, 1455 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    Wong, C.-Y.: Introduction to High Energy Heavy Ion Collisions. World Scientific, Singapore (1994) CrossRefGoogle Scholar
  21. 21.
    Csernai, L.P.: Introduction to Relativistic Heavy Ion Collisions. Wiley, New York (1994) Google Scholar
  22. 22.
    Yagi, K., Hatsuda, T., Miake, Y.: Quark-Gluon Plasma. Cambridge University Press, Cambridge (2005) Google Scholar
  23. 23.
    Vogt, R.L.: Ultrarelativistic Heavy Ion Collisions. Elsevier, Amsterdam (2007) Google Scholar
  24. 24.
    Sarkar, S., Satz, H., Sinha, B. (eds.): The Physics of the Quark-Gluon Plasma. Lect. Notes in Physics, vol. 785. Springer, Berlin (2010) zbMATHGoogle Scholar
  25. 25.
    Fiorkowski, W.: Phenomenology of Ultra-Relativistic Heavy-Ion Collisions. World Scientific, Singapore (2011) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Helmut Satz
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations