Advertisement

Une remarque sur les courbes de Reichardt–Lind et de Schinzel

  • Olivier Wittenberg
Conference paper
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 2)

Abstract

We prove that the arithmetic fundamental group of X admits no section over the absolute Galois group of \(\mathbb{Q}\) when X is the Schinzel curve, thereby confirming in this example the prediction given by Grothendieck’s section conjecture.

Keywords

Absolute Galois Group Ternary Quadratic Form Nous Allons Motivic Cohomology Suite Exacte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. EW09.
    H. Esnault and O. Wittenberg. Remarks on cycle classes of sections of the arithmetic fundamental group. Mosc. Math. J., 9(3):451–467, 2009.zbMATHMathSciNetGoogle Scholar
  2. Gro83.
    A. Grothendieck. Lettre à Faltings du 27 juin 1983 (en allemand), parue dans: Geometric Galois actions, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997.Google Scholar
  3. HS09.
    D. Harari and T. Szamuely. Galois sections for abelianized fundamental groups. Math. Ann., 344(4):779–800, 2009. Avec un appendice par E. V. Flynn.Google Scholar
  4. Jan88.
    U. Jannsen. Continuous étale cohomology. Math. Ann., 280(2):207–245, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  5. Lin40.
    C.-E. Lind. Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins. Thèse de doctorat, Uppsala, 1940.zbMATHGoogle Scholar
  6. Rei42.
    H. Reichardt. Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen. J. reine angew. Math., 184:12–18, 1942.CrossRefMathSciNetGoogle Scholar
  7. Sai89.
    S. Saito. Some observations on motivic cohomology of arithmetic schemes. Invent. Math., 98(2):371–404, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  8. Sch84.
    A. Schinzel. Hasse’s principle for systems of ternary quadratic forms and for one biquadratic form. Studia Math., 77(2):103–109, 1984.zbMATHMathSciNetGoogle Scholar
  9. SGA1.
    A. Grothendieck. Revêtements étale et groupe fondamental (SGA 1). Séminaire de géométrie algébrique du Bois Marie 1960-61, dirigé par A. Grothendieck, augmenté de deux exposés de Mme M. Raynaud, Lecture Notes in Math. 224, Springer-Verlag, Berlin-New York, 1971. Édition recomposée et annotée: Documents Mathématiques 3, Société Mathématique de France, Paris, 2003.Google Scholar
  10. Sti11.
    J. Stix. The Brauer–Manin obstruction for sections of the fundamental group. Journal of Pure and Applied Algebra, 215 (2011), no. 6, 1371-1397.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Département de mathématiques et applicationsÉcole normale supérieureParis Cedex 05France

Personalised recommendations