Portfolio Optimization Using SPEA2 with Resampling

  • Sandra García
  • David Quintana
  • Inés M. Galván
  • Pedro Isasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6936)


The subject of financial portfolio optimization under real-world constraints is a difficult problem that can be tackled using multiobjective evolutionary algorithms. One of the most problematic issues is the dependence of the results on the estimates for a set of parameters, that is, the robustness of solutions. These estimates are often inaccurate and this may result on solutions that, in theory, offered an appropriate risk/return balance and, in practice, resulted being very poor. In this paper we suggest that using a resampling mechanism may filter out the most unstable. We test this idea on real data using SPEA2 as optimization algorithm and the results show that the use of resampling increases significantly the reliability of the resulting portfolios.


Pareto Front Multiobjective Optimization Portfolio Optimization Portfolio Selection Monthly Return 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anagnostopoulos, K.P., Mamanis, G.: The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Systems with Applications (2011) (in press, corrected proof)Google Scholar
  2. 2.
    Deb, K., Steuer, R.E., Tewari, R., Tewari, R.: Bi-objective portfolio optimization using a customized hybrid NSGA-II procedure. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 358–373. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Durillo, J.J., Nebro, A.J., Alba, E.: The jmetal framework for multi-objective optimization: Design and architecture. In: CEC 2010, Barcelona, Spain, pp. 4138–4325 (July 2010)Google Scholar
  4. 4.
    Idzorek, T.M.: Developing robust asset allocations (2006)Google Scholar
  5. 5.
    Markowitz, H.M.: Portfolio selection. The Journal of Finance 7(1), 77–91 (1952)Google Scholar
  6. 6.
    Markowitz, H.M.: Portfolio Selection: efficient diversification of investments. John Wiley & Son, Chichester (1959)Google Scholar
  7. 7.
    Perret-Gentil, C., Victoria-Feser, M.-P.: Robust mean-variance portfolio selection. Fame research paper series. International Center for Financial Asset Management and Engineering (April 2005)Google Scholar
  8. 8.
    Pflug, G., Wozabal, D.: Ambiguity in portfolio selection. Quantitative Finance 7(4), 435–442 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Tütüncü Reha, H., Koenig, M.: Robust asset allocation. Annals OR 132(1-4), 157–187 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Reilly, F.K., Brown, C.K.: Investment Analysis and Portfolio Management. The Dryden Press (1997)Google Scholar
  11. 11.
    Ruppert, D.: Statistics and finance: An introduction. Journal of the American Statistical Association 101, 849–850 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shiraishi, H.: Resampling procedure to construct value at risk efficient portfolios for stationary returns of assets (2008)Google Scholar
  13. 13.
    Skolpadungket, P., Dahal, K., Harnpornchai, N.: Portfolio optimization using multi-objective genetic algorithms. In: Proceeding of 2007 IEEE Congress on Evolutionary Computation, pp. 516–523 (2007)Google Scholar
  14. 14.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical report, Computer Engineering and Networks Laboratory (TIK). Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (2001)Google Scholar
  15. 15.
    Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization: The strength pareto approach. Technical Report 43, Gloriastrasse 35, CH-8092 Zurich, Switzerland (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sandra García
    • 1
  • David Quintana
    • 1
  • Inés M. Galván
    • 1
  • Pedro Isasi
    • 1
  1. 1.Computer Science DepartmentCarlos III University of MadridLeganesSpain

Personalised recommendations