Skip to main content

Adaptive K-Means for Clustering Air Mass Trajectories

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6936))

Abstract

Clustering air mass trajectories is used to identify source regions of certain chemical species. Current clustering methods only use the trajectory coordinates as clustering variables, and as such, are unable to differentiate between similar shaped trajectories that have different source regions and/or seasonal differences. This can lead to a higher variance in the chemical composition within each cluster and loss of information. We propose an adaptive K-means clustering algorithm that uses both the trajectory variables and the associated chemical value. We show, using carbon monoxide data from the Cape Verde for 2007, that our method produces a far more informative clustering than the existing standard method, whilst achieving a lower level of subjectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borge, R., Lumbreras, J., Vardoulakis, S., Kassomenos, P., Rodríguez, E.: Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters. Atmospheric Environment 41, 4434–4450 (2007)

    Article  Google Scholar 

  2. Brankov, E., Rao, S.T., Porter, P.S.: A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants. Atmospheric Environment 32, 1525–1534 (1998)

    Article  Google Scholar 

  3. Cape, J.N., Methven, J., Hudson, L.E.: The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland. Atmospheric Environment 34, 3651–3663 (2000)

    Article  Google Scholar 

  4. Dorling, S.R., Davies, T.D., Pierce, C.E.: Cluster analysis: a technique for estimating the synoptic meteorological controls on air and precipitation chemistry–Results from Eskdalemuir, South Scotland. Atmospheric Environment. Part A. General Topics 26, 2583–2602 (1992)

    Article  Google Scholar 

  5. Eneroth, K., Kjellström, E., Holmén, K.: A trajectory climatology for Svalbard; investigating how atmospheric flow patterns influence observed tracer concentrations. Physics and Chemistry of the Earth, Parts A/B/C 28, 1191–1203 (2003)

    Article  Google Scholar 

  6. Jorba, O., Pérez, C., Rocadenbosch, F., Baldasano, J.M.: Cluster analysis of 4-day back trajectories arriving in the Barcelona area, Spain, from 1997 to 2002. Journal of Applied Meteorology 43, 887–901 (2004)

    Article  Google Scholar 

  7. Kassomenos, P., Vardoulakis, S., Borge, R., Lumbreras, J., Papaloukas, C., Karakitsios, S.: Comparison of statistical clustering techniques for the classification of modelled atmospheric trajectories. Theoretical and Applied Climatology 102, 1–12 (2010)

    Article  Google Scholar 

  8. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  9. Moody, J.L., Galloway, J.: Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda. Tellus 40, 463–479 (1988)

    Article  Google Scholar 

  10. Moy, L.A., Dickerson, R.R., Ryan, W.F.: Relationship between back trajectories and tropospheric trace gas concentrations in rural Virginia. Atmospheric Environment 28, 2789–2800 (1994)

    Article  Google Scholar 

  11. SPSS Inc.: PASW 13 Modeler for Windows. Rel 13.0.0.366. SPSS Inc.,Chicago (2009)

    Google Scholar 

  12. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, London (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mace, A., Sommariva, R., Fleming, Z., Wang, W. (2011). Adaptive K-Means for Clustering Air Mass Trajectories. In: Yin, H., Wang, W., Rayward-Smith, V. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2011. IDEAL 2011. Lecture Notes in Computer Science, vol 6936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23878-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23878-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23877-2

  • Online ISBN: 978-3-642-23878-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics