Cysteine on Gold: An ab-initio Investigation

  • B. Höffling
  • F. Ortmann
  • K. Hannewald
  • F. Bechstedt

Abstract

We present a first principles analysis of the adsorption of the amino acid cysteine on the Au(110) surface. We carry out density functional theory calculations using the repeated-slab supercell method to investigate the molecule-surface interaction. We investigate the adsorption for four different adsorption geometries: one upright configuration, in which the molecule binds to the surface solely via the deprotonized thiolate head group and three flat configurations, which form an additional bond via the amino side group. We analyze bonding energy, charge redistribution, and changes in the density of states. We find that a flat geometry with the Au-thiolate bond at an off-bridge site and the Au-amino bond close to the Au-top site is energetically favored. The electron redistributions exhibit the combined characteristics of the isolated bonds found in earlier studies, supporting the view of strongly localized interaction between the functional groups and the metal surface. The electrostatic nature of the Au-amino bond and the covalent character of the Au-thiolate bond are still visible in the adsorption of the complete molecule.

Keywords

Bridge Site Adsorption Geometry Surface Unit Cell Charge Density Difference Bonding Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Nilsson and G. M. Petterson, Surf. Sci. Rep. 55, 49 (2004). CrossRefGoogle Scholar
  2. 2.
    H. Ishii, K. Sugiyama, I. Eisuke, and K. Seki, Adv. Mater. 11, 605 (1999). CrossRefGoogle Scholar
  3. 3.
    G. Heimel, L. Romaner, J.-L. Brédas, and E. Zojer, Phys. Rev. Lett. 96, 196806 (2006). CrossRefGoogle Scholar
  4. 4.
    H. Vásquez, Y. J. Dappe, J. Ortega, and F. Flores, J. Chem. Phys. 126, 144703 (2007). CrossRefGoogle Scholar
  5. 5.
    I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998). CrossRefGoogle Scholar
  6. 6.
    W. G. Schmidt, K. Seino, M. Preuss, A. Hermann, F. Ortmann, and F. Bechstedt, Appl. Phys. A 85, 387 (2006). CrossRefGoogle Scholar
  7. 7.
    C. Vericat, M. E. Vela, and R. C. Salvarezza, Phys. Chem. Chem. Phys. 7, 3258 (2005). CrossRefGoogle Scholar
  8. 8.
    V. De Renzi, R. Rousseau, D. Marchetto, R. Biagi, S. Scandolo, and U. del Pennino, Phys. Rev. Lett. 95, 046804 (2005). CrossRefGoogle Scholar
  9. 9.
    E. Rauls, S. Blankenburg, and W. G. Schmidt, Surf. Sci. 602, 2170 (2008). CrossRefGoogle Scholar
  10. 10.
    C. Joachim, J. K. Gimzewski, and A. Aviram, Nature 408, 541 (2000). CrossRefGoogle Scholar
  11. 11.
    H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, and B. de Boer, Nature 441, 69 (2006). CrossRefGoogle Scholar
  12. 12.
    C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath, Science 285, 391 (1999). CrossRefGoogle Scholar
  13. 13.
    L. Bogani and W. Wernsdorfer, Nature Materials 7, 179 (2008). CrossRefGoogle Scholar
  14. 14.
    S. Y. Quek, L. Venkataraman, H. J. Choi, S. G. Louie, M. S. Hybertsen, and J. B. Neaton, Nano Lett. 7, 3477 (2007). CrossRefGoogle Scholar
  15. 15.
    R. LeParc, C. I. Smith, M. C. Cuquerella, R. L. Williams, D. G. Fernig, C. Edwards, D. S. Martin, and P. Weightman, Langmuir 22, 3413 (2006). CrossRefGoogle Scholar
  16. 16.
    A. Kühnle, T. R. Linderoth, B. Hammer, and F. Besenbacher, Nature 415, 891 (2002). CrossRefGoogle Scholar
  17. 17.
    A. Kühnle, L. M. Molina, T. R. Linderoth, B. Hammer, and F. Besenbacher, Phys. Rev. Lett. 93, 086101 (2004). CrossRefGoogle Scholar
  18. 18.
    A. Kühnle, T. R. Linderoth, and F. Besenbacher, J. Am. Chem. Soc. 128, 1076 (2005). CrossRefGoogle Scholar
  19. 19.
    A. Kühnle, T. R. Linderoth, and F. Besenbacher, J. Am. Chem. Soc. 125, 14680 (2003). CrossRefGoogle Scholar
  20. 20.
    R. R. Nazmutdinov, J. D. Zhang, T. T. Zinkicheva, I. R. Manyurov, and J. Ulstrup, Langmuir 22, 7556 (2006). CrossRefGoogle Scholar
  21. 21.
    R. Di Felice, A. Selloni, and E. Molinari, J. Phys. Chem. B 107, 1151 (2003). CrossRefGoogle Scholar
  22. 22.
    R. Di Felice and A. Selloni, J. Chem. Phys. 120, 4906 (2004). CrossRefGoogle Scholar
  23. 23.
    B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, Phys. Rev. B 81, 045407 (2010). CrossRefGoogle Scholar
  24. 24.
    B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, Phys. Stat. Solidi C 7, 149 (2010). CrossRefGoogle Scholar
  25. 25.
    B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, in: W. E. Nagel, D. B. Kröner, and M. M. Resch, eds., High Performance Computing in Science and Engineering ’10, p. 119, Springer, Heidelberg (2010). Google Scholar
  26. 26.
    G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996). CrossRefGoogle Scholar
  27. 27.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). CrossRefGoogle Scholar
  28. 28.
    J. P. Perdew, Electronic Structure of Solids ’91, p. 11, Akademie-Verlag, Berlin (1991). Google Scholar
  29. 29.
    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). CrossRefGoogle Scholar
  30. 30.
    R. Maul, M. Preuss, F. Ortmann, K. Hannewald, and F. Bechstedt, J. Phys. Chem. A 111, 4370 (2007). CrossRefGoogle Scholar
  31. 31.
    R. Maul, F. Ortmann, M. Preuss, K. Hannewald, and F. Bechstedt, J. Comp. Chem. 28, 1817 (2007). CrossRefGoogle Scholar
  32. 32.
    F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 95, 186101 (2005). CrossRefGoogle Scholar
  33. 33.
    F. Ortmann, W. G. Schmidt, and F. Bechstedt, Phys. Rev. B 73, 205101 (2006). CrossRefGoogle Scholar
  34. 34.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). CrossRefGoogle Scholar
  35. 35.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). CrossRefMathSciNetGoogle Scholar
  36. 36.
    B. Höffling, F. Ortmann, K. Hannewald, and F. Bechstedt, in: W. E. Nagel, D. B. Kröner, and M. M. Resch, eds., High Performance Computing in Science and Engineering ’09, p. 53, Springer, Heidelberg (2009). Google Scholar
  37. 37.
    R. Leitsmann and F. Bechstedt, in: W. E. Nagel, D. B. Kröner, and M. M. Resch, eds., High Performance Computing in Science and Engineering ’10, p. 135, Springer, Heidelberg (2010). Google Scholar
  38. 38.
    G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford (1999). Google Scholar
  39. 39.
    N. N. Greenwood and A. Earnshaw, Chemie der Elemente, VCH, Weinheim (1988). Google Scholar
  40. 40.
    M. Preuss, W. G. Schmidt, and F. Bechstedt, Phys. Rev. Lett. 94, 236102 (2005). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. Höffling
    • 1
  • F. Ortmann
    • 2
  • K. Hannewald
    • 1
  • F. Bechstedt
    • 1
  1. 1.European Theoretical Spectroscopy Facility (ETSF) and Institut für Festkörpertheorie und -optikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.CEA GrenobleINAC/SPRAM/GTGrenobleFrance

Personalised recommendations