Laser Ablation of Aluminium: Drops and Voids

  • Johannes Roth
  • Johannes Karlin
  • Christian Ulrich
  • Hans-Rainer Trebin
  • Steffen Sonntag


Laser ablation is the process of removing surface material by pulsed laser radiation. The process has been modelled by the molecular dynamics simulation model.

To achieve ablation, the laser beam has to be more intense than a certain threshold. Close to the threshold the heated material will create voids while above the threshold the ablated material forms drops.

First we present a method on how to detect the drops and voids and describe. Then we will present results on the distribution of the drops and voids and compare the results to theory and experimental results.


Molecular Dynamic Simulation Laser Ablation Femtosecond Laser Ablate Material Cluster Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amuroso, S., Toftmann, B., Schou, J., Thermalization of a UV laser ablation plume in a background gas: From directed to a diffusion-like flow, Phys. Rev. E 69 1–6 (2004). Google Scholar
  2. 2.
    Anisimov, S.I., Luk’yanchuk, B.S., Luches, A., An analytical model of three-dimensional laser plume expansion into vacuum in hydrodynamic regime, Appl. Surf. Sci. 96–98 24–32 (1996). CrossRefGoogle Scholar
  3. 3.
    Coon, S., Calaway, W., Pellin, M., White, J., New findings on the sputtering of neutral metal clusters, Surf. Sci. 298 161–172 (1993). CrossRefGoogle Scholar
  4. 4.
    Donnely, T., Lunney, J., Amoruso, S., Bruzzese, R., Wang, X., Ni, X., Angular distributions of plume components in ultrafast laser ablation of metal targets, Appl. Phys. A 100 569–574 (2010). CrossRefGoogle Scholar
  5. 5.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X., Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications, Data Mining and Knowledge Discovery 2 169–174 (1998). CrossRefGoogle Scholar
  6. 6.
    Fisher, D., Fraenkel, M., Henis, Z., Moshe, E., Eliezer, S., Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum, Phys. Rev. E 65 1–8 (2001). CrossRefGoogle Scholar
  7. 7.
    Grottel, S., Reina, G., Vrabec, J, Ertl, T., Visual verification and analysis of cluster detection for molecular dynamics, IEEE Trans. on Visual. and Comp. Graph. 13 1624–1631 (2007). CrossRefGoogle Scholar
  8. 8.
    Ivanov, D.S., Zhigilei, V., Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films, Phys. Rev. B 68 064114 (2003). CrossRefGoogle Scholar
  9. 9.
    Karlin, J., Formation of Voids in Laser-Irradiated Aluminium, Diploma Thesis, Stuttgart (2011). Google Scholar
  10. 10.
    Konomi, I., Motohiro, T., Asaoka, T., Angular distribution of atoms ejected by laser ablation of different metals, J. Appl. Phys. 106 013107 (2009). CrossRefGoogle Scholar
  11. 11.
    Leveugle, E., Zhigilei, L.V., Molecular dynamics simulation study of ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation, J. Appl. Phys. 102 074914 (2007). CrossRefGoogle Scholar
  12. 12.
    Lewis, L.J., Perez, D., Laser ablation with short and ultrashort laser pulses: Basic mechanisms from molecular dynamics simulations, Appl. Surf. Sci. 255 5101–5106 (2009). CrossRefGoogle Scholar
  13. 13.
    Lewis, L.J., Perez, D., Molecular dynamics study of ablation of solids under femtosecond laser pulses, Phys. Rev. B 67 184102 (2003). CrossRefGoogle Scholar
  14. 14.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T., YALE: Rapid Prototyping for Complex Data Mining Tasks, in KDD’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, eds. Ungar, L., Craven, M., Gunopulos, D., Eliassi-Rad, T., ACM, New York, 2006, pp. 935–940. CrossRefGoogle Scholar
  15. 15.
    Okano, Y., Oguri, K., Nishikawa, T., Nakano, H., Observation of femtosecond-laser-induced ablation plumes of aluminium using space- and time-resolved soft x-ray absorption spectroscopy, Appl. Phys. Lett. 89 221502 (2006). CrossRefGoogle Scholar
  16. 16.
    Roth, J., Trichet, C., Trebin, H.-R., Sonntag, S., Laser Ablation of Metals, in High Performance Computing in Science and Engineering ’10, eds. Nagel, W.E., Kröner, D.B., Resch, M.M., Springer, Heidelberg, 2011, pp. 159–168. Google Scholar
  17. 17.
    Sonntag, S., Computer Simulations of Laser Ablation from Simple Metals to Complex Metallic Alloys, PhD Thesis, Stuttgart (2011). Google Scholar
  18. 18.
    Sonntag, S., Trichet, C., Roth, J., Trebin, H.-R., Molecular dynamics simulations of cluster distribution from femtosecond laser ablation in aluminum, Appl. Phys. A 104 559–565 (2011). CrossRefGoogle Scholar
  19. 19.
    Stadler, J., Mikulla, R., Trebin, H.-R., IMD: A software package for molecular dynamics studies on parallel computers, Int. J. Mod. Phys. C 8 1131–1140 (1997). CrossRefGoogle Scholar
  20. 20.
    Toftmann, B., Schou, J., Lunney, J., Dynamics of the plume produced by nanosecond ultraviolet laser ablation of metals, Phys. Rev. B 67 1–5 (2003). CrossRefGoogle Scholar
  21. 21.
    Wuchner, A., Wahl, M., The formation of clusters during ion induced sputtering of metals, Nuc. Inst. Meth. Phys. Res. Sec. B 115 581–589 (1996). CrossRefGoogle Scholar
  22. 22.
    Zhigilei, L.V., Dynamics of the plume formation and parameters of the ejected clusters in short-pulses laser ablation, App. Phys. A 76 339–350 (2003). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Johannes Roth
    • 1
  • Johannes Karlin
    • 1
  • Christian Ulrich
    • 2
  • Hans-Rainer Trebin
    • 1
  • Steffen Sonntag
    • 1
  1. 1.Institut für Theoretische und Angewandte PhysikUniversität StuttgartStuttgartGermany
  2. 2.Fraunhofer-Institut für WerkstoffmechanikFreiburg im BreisgauGermany

Personalised recommendations