Advertisement

Higgs Boson Mass Bounds from a Chirally Invariant Lattice Higgs-Yukawa Model

  • Philipp Gerhold
  • Karl Jansen
  • Jim Kallarackal

Abstract

We consider a chirally invariant lattice Higgs-Yukawa model based on the Neuberger overlap operator Open image in new window . The model will be evaluated using PHMC-simulations and we will present final results on the upper and lower Higgs boson mass bounds. The question of a fourth generation of heavy quarks has recently gained attention and we will illustrate the effect of heavy quarks on the Higgs boson mass bounds. Finally we report on the unstable nature of the Higgs boson. The resonance mass and width have been computed in a genuinely non-perturbative manner. The results are compared to the former Higgs boson mass bounds.

Keywords

Higgs Boson Yukawa Coupling Heavy Quark Resonance Parameter Goldstone Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Smit. Standard model and chiral gauge theories on the lattice. Nucl. Phys. Proc. Suppl., 17:3–16, 1990. CrossRefGoogle Scholar
  2. 2.
    J. Shigemitsu. Higgs-Yukawa chiral models. Nucl. Phys. Proc. Suppl., 20:515–527, 1991. CrossRefGoogle Scholar
  3. 3.
    M. F. L. Golterman. Lattice chiral gauge theories: Results and problems. Nucl. Phys. Proc. Suppl., 20:528–541, 1991. CrossRefGoogle Scholar
  4. 4.
    I. Montvay and G. Münster. Quantum Fields on a Lattice (Cambridge Monographs on Mathematical Physics). Cambridge University Press, 1997. Google Scholar
  5. 5.
    A. K. De and J. Jersák. Yukawa models on the lattice. HLRZ Jülich, HLRZ 91-83, preprint edition, 1991. Google Scholar
  6. 6.
    M. F. L. Golterman, D. N. Petcher, and E. Rivas. On the Eichten-Preskill proposal for lattice chiral gauge theories. Nucl. Phys. Proc. Suppl. B, 29C:193–199, 1992. CrossRefGoogle Scholar
  7. 7.
    K. Jansen. Domain wall fermions and chiral gauge theories. Phys. Rept., 273:1–54, 1996. CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Lüscher. Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation. Phys. Lett. B, 428:342–345, 1998. CrossRefGoogle Scholar
  9. 9.
    P. H. Ginsparg and K. G. Wilson. A remnant of chiral symmetry on the lattice. Phys. Rev. D, 25:2649, 1982. CrossRefGoogle Scholar
  10. 10.
    T. Bhattacharya, M. R. Martin, and E. Poppitz. Chiral lattice gauge theories from warped domain walls and Ginsparg-Wilson fermions. Phys. Rev. D, 74:085028, 2006. CrossRefGoogle Scholar
  11. 11.
    J. Giedt and E. Poppitz. Chiral lattice gauge theories and the strong coupling dynamics of a Yukawa-Higgs model with Ginsparg-Wilson fermions. JHEP, 10:076, 2007. CrossRefGoogle Scholar
  12. 12.
    E. Poppitz and Y. Shang. Lattice chirality and the decoupling of mirror fermions. arXiv:0706.1043 [hep-th], 2007.
  13. 13.
    Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder. New Higgs physics from the lattice. PoS, LAT2007:056, 2007. Google Scholar
  14. 14.
    P. Gerhold and K. Jansen. The phase structure of a chirally invariant lattice Higgs-Yukawa model for small and for large values of the Yukawa coupling constant. arXiv:0705.2539 [hep-lat], 2007.
  15. 15.
    P. Gerhold. Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model. 2010. Google Scholar
  16. 16.
    P. Gerhold and K. Jansen. Lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions. JHEP, 0907:025, 2009. CrossRefGoogle Scholar
  17. 17.
    P. Gerhold and K. Jansen. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model. JHEP, 1004:094, 2010. CrossRefGoogle Scholar
  18. 18.
    B. Holdom et al. Four statements about the fourth generation. PMC Phys. A, 3:4, 2009. CrossRefGoogle Scholar
  19. 19.
    P. Q. Hung. Minimal SU(5) resuscitated by long-lived quarks and leptons. Phys. Rev. Lett., 80:3000–3003, 1998. CrossRefGoogle Scholar
  20. 20.
    M. Luscher. Signatures of unstable particles in finite volume. Nucl. Phys. B, 364:237–254, 1991. CrossRefMathSciNetGoogle Scholar
  21. 21.
    M. Luscher. Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B, 354:531–578, 1991. CrossRefMathSciNetGoogle Scholar
  22. 22.
    H. Neuberger. More about exactly massless quarks on the lattice. Phys. Lett. B, 427:353–355, 1998. CrossRefGoogle Scholar
  23. 23.
    R. Frezzotti and K. Jansen. The PHMC algorithm for simulations of dynamical fermions. I: Description and properties. Nucl. Phys. B, 555:395–431, 1999. CrossRefGoogle Scholar
  24. 24.
    U. Wolff. Monte Carlo errors with less errors. Comput. Phys. Commun., 156:143–153, 2004. CrossRefzbMATHGoogle Scholar
  25. 25.
    M. Lüscher and P Weisz. Scaling laws and triviality bounds in the lattice phi**4 theory. 3. N component model. Nucl. Phys. B, 318:705, 1989. CrossRefGoogle Scholar
  26. 26.
    M. Luscher. Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states. Commun. Math. Phys., 104:177, 1986. CrossRefMathSciNetGoogle Scholar
  27. 27.
    M. Luscher. Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states. Commun. Math. Phys., 105:153–188, 1986. CrossRefMathSciNetGoogle Scholar
  28. 28.
    M. Gockeler, H. A. Kastrup, J. Westphalen, and F. Zimmermann. Scattering phases on finite lattices in the broken phase of the four-dimensional O(4) phi**4 theory. Nucl. Phys. B, 425:413–448, 1994. CrossRefGoogle Scholar
  29. 29.
    M. Luscher and U. Wolff. How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation. Nucl. Phys. B, 339:222–252, 1990. CrossRefMathSciNetGoogle Scholar
  30. 30.
    B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, and R. Sommer. On the generalized eigenvalue method for energies and matrix elements in lattice field theory. JHEP, 0904:094, 2009. Google Scholar
  31. 31.
    K. Rummukainen and S. A. Gottlieb. Resonance scattering phase shifts on a nonrest frame lattice. Nucl. Phys. B, 450:397–436, 1995. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Humboldt-Universität BerlinBerlinGermany
  2. 2.DESY-ZeuthenZeuthenGermany
  3. 3.Humboldt-Universität BerlinBerlinGermany

Personalised recommendations